Isomorphism and Antiisomorphism in (S, Q)-Fuzzy Translation of (S, Q)-Fuzzy Subhemirings of a Hemiring

M Latha, N Anitha

Abstract
In this paper, we made an attempt to study the algebraic nature of a(S, Q)-fuzzy subhemiring of a Hemiring.
2000 AMS Subject Classification: 03F55, 06D72, 08A72.

Keywords: (S,Q)-fuzzy set, (S, Q)-fuzzy subhemiring, (S, Q)- Fuzzy Translation.

Introduction
There are many concepts of universal algebras generalizing an associative ring (R, +, ·). Some of them in particular, near rings and several kinds of semirings have been proven very useful. Semirings (called also half rings) are algebras (R; +, ·) share the same properties as a ring except that (R; +) is assumed to be a semi group rather than a commutative group. Semi rings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R; +, ·) is said to be a semi ring (R; +) and (R; ·) are semi groups satisfying a.(b+c)=a.b+a.c and (b+c).a=b.a+c.a for all a, b and c in R. A semiring R is said to be additively commutative if a+ b = b+ a for all a, b and c in R. A semiring R may have an identity 1, defined by 1+a=a=1 and a zero 0, defined by 0+a=a=0 and a.0=0=0.a for all a in R. A semiring R is said to be a hemi ring if it is an additively commutative with zero. After the introduction of fuzzy sets by L.A. Zadeh \cite{16}, several researchers explores on the generalization of the concept of fuzzy sets. Osman Kazanci, Sultan yamark and serifeyilmaz in \cite{11} have introduced the Notion of intuitionistic Q-fuzzification of N-subgroups (subnear rings) in a near-ring and investigated some related properties. Solairaju. A and R. Nagarajan, have given a new structure in construction of Q-fuzzy groups and subgroups \cite{14, 15}. In this paper, we introduce some properties and theorems in (S,Q)-fuzzy subhemirings of a hemiring.

1. Preliminaries
1.1 Definition: A S-norm is a binary operation \(S: [0,1] \times [0,1] \to [0,1] \) satisfying the following requirements:
(i) \(S(x, 1) = x \) for all \(x \in [0,1] \) (boundary conditions)
(ii) \(S(x, y) = S(y, x) \) (symmetry)
(iii) \(S(x, y) \leq S(x, z) \) for all \(x, y, z \in [0,1] \) (monotonicity)

1.2 Definition: Let X be a non-empty set and Q be a non-empty set. A Q-fuzzy subset A of X is defined by \(A: X \to [0,1] \).

1.3 Definition: The union of two (S,Q)-fuzzy sets A and B is defined by \((A \cup B)(x, q) = \max \{ S(A(x, q)), S(B(x, q)) \} \) for all \(x \in X \) and q in Q.

1.4 Definition: The intersection of two (S,Q)-fuzzy sets A and B is defined by \((A \cap B)(x, q) = \min \{ S(A(x, q)), S(B(x, q)) \} \) for all \(x \in X \) and q in Q.
1.5 Definition: Let $(R, +, \cdot)$ be a hemiring. A (S, Q)-fuzzy subset A of R is said to be a (S, Q)-fuzzy subhemiring (SQFSHR) of R if it satisfies the following conditions:
(i) $\mu_A(x + y, q) \in S(\mu_A(x, q), \mu_A(y, q))$
(ii) $\mu_A(xy, q) \in S(\mu_A(x, q), \mu_A(y, q))$, for all x and y in R, and q in Q.

1.6 Definition: Let $(R, +, \cdot)$ be a hemiring. A (S, Q)-fuzzy subhemiring A of R is said to be a (S, Q)-fuzzy normal subhemiring (SQFNSHR) of R if
$S(\mu_A(xy, q)) = S(\mu_A(yx, q))$, for all x and y in R, and q in Q.

1.7 Definition: Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Then the function $f: R \rightarrow R'$ is called a hemiring homomorphism if it satisfies the following axioms:
i) $f(x + y) = f(x) + f(y)$,
ii) $f(xy) = f(x)f(y)$, for all x and y in R.

1.8 Definition: Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Then the function $f: R \rightarrow R'$ is called a hemiring anti-homomorphism if it satisfies the following axioms:
i) $f(x + y) = f(y) + f(x)$,
ii) $f(xy) = f(y)f(x)$, for all x and y in R.

1.9 Definition: Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Then the function $f: R \rightarrow R'$ be a hemiring homomorphism. If f is one-to-one and onto, then f is called a hemiring isomorphism.

1.10 Definition: Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Then the function $f: R \rightarrow R'$ be a hemiring anti-homomorphism. If f is one-to-one and onto, then f is called a hemiring anti-isomorphism.

1.11 Definition: Let A be a (S, Q)-fuzzy subset of X and $\alpha \in [0, 1] - \text{Sup}\left\{ A(x, q) : x \in X, 0 < A(x, q) < 1 \right\}$. Then $T = T^\alpha_A$ is called a (S, Q)-fuzzy translation of A if $S(\mu_T(x, q)) = S(\mu_A(x, q) + \alpha)$, for all x in X.

2. Isomorphism and Antiisomorphism in (S, Q)-Fuzzy Translation of (S, Q)-Fuzzy Subhemirings of a Hemiring

2.1 Theorem: Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. The (S, Q)-fuzzy normal subhemiring V of $(R') = \text{antihomomorphic preimage}$ is a (S, Q)-fuzzy normal subhemiring of R.

Proof: Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Let $f: R \rightarrow R'$ be an anti-homomorphic preimage of V. Then we have to prove that A is a (S, Q)-fuzzy normal subhemiring of hemiring R. Let x and y in R and q in Q. Then clearly A is a (S, Q)-fuzzy subhemiring of the hemiring R. Since V is a (S, Q)-fuzzy subhemiring of the hemiring R', we have to prove that A is a (S, Q)-fuzzy normal subhemiring of hemiring R. Let x and y in R and q in Q. Then clearly A is a (S, Q)-fuzzy normal subhemiring of the hemiring R. Now, $S(\mu_A(xy, q)) = S(\mu_V((f(xy), q)))$, since $S(\mu_A(x, q)) = S(\mu_V((fx, q))) = S(\mu_V((fy, f(x), q)))$ as f is an anti-homomorphism = $S(\mu_V((fy, f(x), q)))$ as f is an anti-homomorphism = $S(\mu_V((fy, f(x), q)))$ as f is an anti-homomorphism = $S(\mu_A((xy, q)))$, which implies that $S(\mu_A((xy, q))) = S(\mu_A((yx, q)))$ for all x and y in R, and q in Q. Hence A is a (S, Q)-fuzzy normal subhemiring of the hemiring R.

In the following Theorem \circ is the composition operation of functions:

2.2 Theorem: Let A be a (S, Q)-fuzzy subhemiring of the hemiring H and f is an isomorphism from a hemiring R onto H. If A be a (S, Q)-fuzzy normal subhemiring of the hemiring H, then $A \circ f$ is a (S, Q)-fuzzy normal subhemiring of the hemiring R.

Proof: Let x and y in R and q in Q and A be a (S, Q) fuzzy normal subhemiring of the hemiring H. Then we have, Clearly $A \circ f$ is a (S, Q)-fuzzy normal subhemiring of the hemiring R. Now, $S(\mu_A((f(xy), q))) = S(\mu_A(\circ f)(xy, q))$ as f is an isomorphism = $S(\mu_A(f(y)f(x), q))$ as f is an isomorphism = $S(\mu_A((yx, q)))$ for all x and y in R, and q in Q. Therefore $A \circ f$ is a (S, Q)-fuzzy normal subhemiring of the hemiring R.

2.3 Theorem: Let A be a (S, Q)-fuzzy subhemiring of the hemiring H and f is an anti-isomorphism from a hemiring R onto H. If A be a (S, Q)-fuzzy normal subhemiring of the hemiring H, then $A \circ f$ is a (S, Q)-fuzzy normal subhemiring of the hemiring R.

Proof: Let x and y in R and q in Q and A be a (S, Q) fuzzy normal subhemiring of the hemiring H. Then we have, Clearly $A \circ f$ is a (S, Q)-fuzzy subhemiring of the hemiring R. Now, $S(\mu_A(\circ f)(xy, q)) = S(\mu_A(f(xy), q))$ as f is an anti-isomorphism = $S(\mu_A(f(y)f(x), q))$ as f is an anti-isomorphism = $S(\mu_A((yx, q)))$, which implies that $S(\mu_A((xy, q))) = S(\mu_A(f)((xy, q)))$, for all x and y in R and q in Q. Therefore $A \circ f$ is a (S, Q) fuzzy normal subhemiring of the hemiring R.

2.4 Theorem: If M and N are two (S, Q)-fuzzy translations of (S, Q)-fuzzy normal subhemiring A of a hemiring $(R, +, \cdot)$, then their intersection $M \cap N$ is a (S, Q)-fuzzy translation of A.
Proof: It is trivial.

2.5 Theorem: The intersection of family of (S, Q)-fuzzy translations of (S, Q) fuzzy normal subhemiring A of a hemiring $(R, +,.)$ is a (S,Q)-fuzzy translation of A.

Proof: It is trivial.

2.6 Theorem: If M and N are two (S,Q)-fuzzy translations of (S, Q) fuzzy normal subhemiring A of a hemiring $(R, +,.)$, then their union $M \cup N$ is a (S,Q)-fuzzy translation of A.

Proof: It is trivial.

2.7 Theorem: The union of family of (S, Q)-fuzzy translations of (S, Q) fuzzy normal subhemiring A of a hemiring $(R, +,.)$ is a (S,Q)-fuzzy translation of A.

Proof: It is trivial.

2.8 Theorem: Let $(R, +,.)$ and $(R', +,.)$ be any two hemirings and Q be a non-empty set. If $f: R \to R'$ is a homomorphism, then (S,Q)-fuzzy translation of a (S,Q)-fuzzy normal subhemiring A of R under the homomorphic image is (S,Q)-fuzzy normal subhemiring of $f(R) = R'$.

Proof: Let $(R, +,.)$ and $(R', +,.)$ be any two hemirings and Q be a non-empty set and $f: R \to R'$ be a homomorphism. That is $f(x + y) = f(x) + f(y)$ and $f(xy) = f(x)f(y)$, for all x and y in R. Let $T = T_A^V$ be the (S,Q)-fuzzy translation of a (S,Q)-fuzzy normal subhemiring of V of R' and A be the homomorphic image of T under f. We have to prove that Visa (S,Q) fuzzy normal subhemiring of R'. Now, $S(V(f(x)y), q) = S(V(f(x)f(y), q)) \geq S(T(xy), q) = S(A(xy, q) + \alpha) = S(A(xy, q) + \alpha) = S(T(xy), q)$, which implies that $S(V(f(x)y), q) \geq S(V(f(x)f(y), q))$ for all $f(x)$ and $f(y)$ in R' and q in Q. Therefore V is a (S,Q)-fuzzy normal subhemiring of the hemiring R'.

2.9 Theorem: Let $(R, +,.)$ and $(R', +,.)$ be any two hemirings and Q be a non-empty set. If $f: R \to R'$ is a homomorphism, then (S,Q)-fuzzy translation of a (S,Q)-fuzzy normal subhemiring V of $(R) = R'$ under the homomorphic pre-image is (S,Q)-fuzzy normal subhemiring of R.

Proof: Let $(R, +,.)$ and $(R', +,.)$ be any two hemirings and Q be a non-empty set and $f: R \to R'$ be a homomorphism. That is $f(x + y) = f(x) + f(y)$ and $f(xy) = f(x)f(y)$, for all x and y in R. Let $T = T_A^V$ be the (S,Q)-fuzzy translation of a (S,Q)-fuzzy normal subhemiring of V of R' and A be the homomorphic image of T under f. We have to prove that Visa (S,Q)-fuzzy normal subhemiring of R'. Now, $S(A(xy, q)) = S(T(f(xy), q)) = S(V(f(xy), q)) \geq S(T(xy), q) = S(A(xy, q) + \alpha) = S(A(xy, q) + \alpha) = S(T(xy), q)$, which implies that $S(A(xy, q)) \geq S(V(f(xy), q))$ for all x and y in R and q in Q. Therefore A is a (S,Q)-fuzzy normal subhemiring of the hemiring R.

2.10 Theorem: Let $(R, +,.)$ and $(R', +,.)$ be any two hemirings and Q be a non-empty set. If $f: R \to R'$ is an anti-homomorphism, then (S,Q)-fuzzy translation of a (S,Q)-fuzzy normal subhemiring A of R under the anti-homomorphic image is (S,Q)-fuzzy normal subhemiring of $f(R) = R'$.

Proof: Let $(R, +,.)$ and $(R', +,.)$ be any two hemirings and Q be a non-empty set and $f: R \to R'$ be an anti-homomorphism. That is $f(x + y) = f(x) + f(y)$ and $f(xy) = f(x)f(y)$, for all x and y in R. Let $T = T_A^V$ be the (S,Q)-fuzzy translation of a (S,Q)-fuzzy normal subhemiring of A of R and V be the anti- homomorphic image of T under f. We have to prove that Visa (S,Q)-fuzzy normal subhemiring of R'. Now, $S(V(f(x)y), q) = S(V(f(x)f(y), q)) \leq S(T(xy), q) = S(A(xy, q) + \alpha) = S(A(xy, q) + \alpha) = S(T(xy), q)$, which implies that $S(V(f(x)y), q) \leq S(V(f(x)f(y), q))$, for all $f(x)$ and $f(y)$ in R' and q in Q. Therefore V is a (S,Q)-fuzzy normal subhemiring of the hemiring R'.

2.11 Theorem: Let $(R, +,.)$ and $(R', +,.)$ be any two hemirings and Q be a non-empty set. If $f: R \to R'$ is an anti-homomorphism, then (S,Q)-fuzzy translation of a (S,Q)-fuzzy normal subhemiring V of $(R) = R'$ under the anti-homomorphic pre-image is (S,Q)-fuzzy normal subhemiring of R.

Proof: Let $(R, +,.)$ and $(R', +,.)$ be any two hemirings and Q be a non-empty set and $f: R \to R'$ be an anti-homomorphism. That is $f(x + y) = f(y) + f(x)$ and $f(xy) = f(y)f(x)$, for all x and y in R. Let $T = T_A^V$ be the (S,Q)-fuzzy translation of a (S,Q)-fuzzy normal subhemiring of V of R' and A be the anti-homomorphic pre-image of T under f. We have to prove that Visa (S,Q)-fuzzy normal subhemiring of R'. Let x and y in R and q in Q. Then clearly, V is a (S,Q)-fuzzy normal subhemiring of the hemiring R. Therefore V is a (S,Q)-fuzzy normal subhemiring of the hemiring R'.

It is trivial.
Now, $S(A(xy,q)) = S(T(f(xy),q)) = S(V(f(xy),q) + \alpha) = S(V(f(y)f(x),q) + \alpha) = S(V(f(x)f(y),q) + \alpha) = S(T(f(yx),q)) = S(A(yx,q))$, which implies that $S(A(xy,q)) = S(A(yx,q))$, for all x and y in R and q in Q. Therefore, A is a (S,Q)-fuzzy normal subhemiring of R.

Reference