On W_{Ig}-Continuous and W_{Ig^*}-Continuous Functions in Ideal Topological Spaces

V Rajendran, N Suresh

Abstract

In this paper we introduce and study the notions of W_{Ig}-continuous and W_{Ig^*}-continuous, W_{Ig}-irresolute and W_{Ig^*}-irresolute in ideal topological spaces, and also we studied their properties.

Keywords: W_{Ig}-closed, W_{Ig^*}-closed, W_{Ig}-continuous, W_{Ig^*}-continuous, W_{Ig}-irresolute, W_{Ig^*}-irresolute.

Introduction

Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett [5] once again investigated applications of topological ideals. The notion of I_{g}-closed sets was first by Dontchev.et.al [3] in 1999. Navaneethakrishnan and Joseph [9] further investigated and characterized I_{g}-closed sets and I_{g}-open sets by the use of local functions. The notion of I_{g^*}-closed sets was introduced by Ravi.et.al [10] in 2013. Recently the notion of W_{Ig}-closed sets and W_{Ig^*}-closed sets was introduced and investigated by Maragathavalli.et.al [8]. In this paper, we introduce the notions of W_{Ig}-continuous and W_{Ig^*}-continuous functions in ideal topological spaces.

An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties. (1) $A \in I$ and $B \subseteq A$ implies $B \in I$, (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ, I) with an ideal I on X and is denoted by (X, τ, I). For a subset $A \subseteq X$, $A^{*}(I, \tau) = \{ x \in X : A \cap U \notin I \text{ for every } U \in \tau(X, x) \}$ is called the local function of A with respect to I and τ [6]. We simply write A^{*} in case there is no chance for confusion. A Kuratowski closure operator $cl^{*}(.)$ for a topology $\tau^{*}(I, \tau)$ called the *-topology, finer than τ is defined $cl^{*}(A) = A \cup A^{*}$ [11]. If $A \subseteq X$, $cl(A)$ and $int(A)$ will respectively, denote the closure and interior of A in (X, τ).

Definition 1.1. A subset A of a topological space (X, τ) is called

1. g-closed [7], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
2. \tilde{g}-closed [12], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ).

Definition 1.2. A subset A of a topological space (X, τ, I) is called

1. I_{g}-closed [8], if $A^{*} \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2. I_{g}-closed [11], if $A^{*} \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
3. W_{Ig}-closed [8], if $int(A^{*}) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
4. W_{Ig^*}-closed [8], if $int(A^{*}) \subseteq U$ whenever $A \subseteq U$ and U is \tilde{g}-open in X.
5. g^{*}-closed [10], if $A^{*} \subseteq U$ whenever $A \subseteq U$ and U is \tilde{g}-open in (X, τ).

Definition 1.3. A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be

1. g-continuous [2], if for every open set $V \in \sigma$, $f^{-1}(V)$ is g-open in (X, τ).
2. \tilde{g}-continuous [12], if for every open set $V \in \sigma$, $f^{-1}(V)$ is \tilde{g}-open in (X, τ).

Definition 1.4. A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be I_{g}-continuous [5], if $f^{-1}(V)$ is I_{g}-closed in (X, τ, I) for every closed set V in (Y, σ).
2. wl_g-continuous and wl_{g^*}-continuous.

Definition 2.1: A function $f : (X, \tau, I) \to (Y, \sigma)$ is Said to be 1. Weakly I_g-continuous (briefly wl_g-continuous) if $f^{-1}(V)$ is weakly I_g-closed in (X, τ, I) for every closed set V in (Y, σ).

2. Weakly I_{g^*}-continuous (briefly wl_{g^*}-continuous) if $f^{-1}(V)$ is weakly I_{g^*}-closed in (X, τ, I) for every closed set V in (Y, σ).

Definition 2.2: A function $f : (X, \tau, I_1) \to (Y, \sigma, I_2)$ is Said to be (i) wl_g-irresolute if $f^{-1}(V)$ is wl_g-closed in (X, τ, I_1) for every wl_g-closed set V in (Y, σ, I_2).

(ii) wl_{g^*}-irresolute if $f^{-1}(V)$ is wl_{g^*}-closed in (X, τ, I_1) for every wl_{g^*}-closed set V in (Y, σ, I_2).

Theorem 2.3: Ever continuous function is wl_g-continuous.

Proof: Let f be a continuous function and let V be a closed set in (Y, σ). Then $f^{-1}(V)$ is closed set in (X, τ, I). Since every closed set is wl_g-closed. Hence $f^{-1}(V)$ is wl_g-closed set in (X, τ, I). Therefore f is wl_g-continuous.

Example 2.4: Let $X = Y = \{a, b, c\}$, $\tau = \{\varphi, \{b\}, \{b, c\}, X\}$, $\sigma = \{\varphi, \{c\}, \{a, c\}, Y\}$ and $I = \{\varphi, \{c\}\}$. Let the function $f : (X, \tau, I) \to (Y, \sigma)$ be the identity function. Then the function f is wl_g-continuous but not wl_{g^*}-continuous.

Theorem 2.5: Ever continuous function is wl_{g^*}-continuous.

Proof: Let f be a continuous function and let V be a closed set in (Y, σ). Then $f^{-1}(V)$ is closed set in (X, τ, I). Since every closed set is wl_{g^*}-closed. Hence $f^{-1}(V)$ is wl_{g^*}-closed set in (X, τ, I). Therefore f is wl_{g^*}-continuous.

Example 2.6: In example 2.4, let the function $f : (X, \tau, I) \to (Y, \sigma)$ be the identity function. Then the function f is wl_{g^*}-continuous but not continuous.

Theorem 2.7: Ever I_g-continuous function is wl_g-continuous.

Proof: Let f be an I_g-continuous function and let V be a closed set in (Y, σ), then $f^{-1}(V)$ is I_g-closed set in (X, τ, I). Since every I_g-closed set is wl_g-closed. Hence $f^{-1}(V)$ is wl_g-closed set in (X, τ, I). Therefore f is wl_g-continuous.

Example 2.8: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\varphi, \{a\}, \{a, b\}, \{a, b, c\}, X\}$, $\sigma = \{\varphi, \{d\}, \{c, d\}, Y\}$ and $I = \{\varphi, \{a\}\}$. Let the function $f : (X, \tau, I) \to (Y, \sigma)$ be defined by $f(a) = b, f(b) = c, f(c) = a, f(d) = d$. Then the function f is wl_g-continuous but not I_g-continuous.

Theorem 2.9: Ever \tilde{g}-continuous function is wl_g-continuous.

Proof: Let f be an \tilde{g}-continuous function and let V be a closed set in (Y, σ), then $f^{-1}(V)$ is \tilde{g}-closed set in (X, τ, I). Since every \tilde{g}-closed set is wl_g-closed set. Hence $f^{-1}(V)$ is wl_g-closed set in (X, τ, I). Therefore f is wl_g-continuous.

Example 2.10: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\varphi, \{b\}, \{a, b, c\}, X\}$, $\sigma = \{\varphi, \{c\}, \{a, c\}, Y\}$ and $I = \{\varphi, \{c\}\}$. Let the function $f : (X, \tau, I) \to (Y, \sigma)$ be the identity function. Then the function f is wl_g-continuous but not \tilde{g}-continuous.

Theorem 2.11: Ever g-continuous function is wl_g-continuous.

Proof: Let f be a g-continuous function and let V be a closed set in (Y, σ), then $f^{-1}(V)$ is g-closed set in (X, τ, I). Since every g-closed set is wl_g-closed set. Hence $f^{-1}(V)$ is wl_g-closed set in (X, τ, I). Therefore f is wl_g-continuous.

Example 2.12: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\varphi, \{b\}, \{c\}, \{b, c\}, X\}$, $\sigma = \{\varphi, \{c\}, X\}$ and $I = \{\varphi, \{b\}\}$. Let the function $f : (X, \tau, I) \to (Y, \sigma)$ be the identity function. Then the function f is wl_g-continuous but not g-continuous.

Theorem 2.13: Ever I_{g^*}-continuous function is wl_{g^*}-continuous.

Proof: Let f be an I_{g^*}-continuous function and let V be a closed set in (Y, σ). Then $f^{-1}(V)$ is I_{g^*}-closed set in (X, τ, I). Since every I_{g^*}-closed set is wl_{g^*}-closed, hence $f^{-1}(V)$ is wl_{g^*}-closed set in (X, τ, I). Therefore f is wl_{g^*}-continuous.

Example 2.14: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\varphi, \{b\}, \{c\}, \{b, c\}, X\}$, $\sigma = \{\varphi, \{c\}, Y\}$ and $I = \{\varphi, \{d\}\}$. Let the function $f : (X, \tau, I) \to (Y, \sigma)$ be the identity function. Then the function f is wl_{g^*}-continuous but not I_{g^*}-continuous.

Theorem 2.15: Ever g-continuous function is wl_{g^*}-continuous.

Proof: Let f be a g-continuous function and let V be a closed set in (Y, σ), then $f^{-1}(V)$ is g-closed set in (X, τ, I). Since every g-closed set is wl_{g^*}-closed set. Hence $f^{-1}(V)$ is wl_{g^*}-closed set in (X, τ, I). Therefore f is wl_{g^*}-continuous.

Example 2.16: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\varphi, \{a\}, \{a, b, c\}, X\}$, $\sigma = \{\varphi, \{d\}, \{c, d\}, Y\}$ and $I = \{\varphi, \{a\}\}$. Let the function $f : (X, \tau, I) \to (Y, \sigma)$ be the identity function. Then the function f is wl_{g^*}-continuous but not g-continuous.

Theorem 2.17: Ever I_g-continuous function is wl_{g^*}-continuous.

Proof: Let f be an I_g-continuous function and let V be a closed set in (Y, σ), then $f^{-1}(V)$ is I_g-closed set in (X, τ, I). Since every I_g-closed set is wl_{g^*}-closed set. Hence $f^{-1}(V)$ is wl_{g^*}-closed set in (X, τ, I). Therefore f is wl_{g^*}-continuous.

Example 2.18: In example 2.16, let the function $f : (X, \tau, I) \to (Y, \sigma)$ be the identity function. Then the function f is wl_{g^*}-continuous but not I_g-continuous.

Theorem 2.19: Ever I_g-continuous function is wl_{g^*}-continuous.

Proof: Let f be an I_g-continuous function and let V be a closed set in (Y, σ). Then $f^{-1}(V)$ is I_g-closed set in (X, τ, I). Since every I_g-closed set is wl_{g^*}-closed set. Hence $f^{-1}(V)$ is wl_{g^*}-closed set in (X, τ, I). Therefore f is wl_{g^*}-continuous.

~ 636 ~
Since every I_ϕ-closed set is w_{I_ϕ}-closed set. Hence $f^{-1}(V)$ is w_{I_ϕ}-closed set in (X, τ, I). Therefore f is w_{I_ϕ}-continuous.

Example 2.20: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{b\}, \{a,b,c\}, X\}$, $\sigma = \{\phi, \{a\}, \{a,c,d\}, Y\}$ and $I = \{\phi, \{d\}\}$. Let the function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ be the identity function. Then the function f is w_{I_ϕ}-continuous but not I_ϕ-continuous.

Theorem 2.21: Ever w_{I_ϕ}-continuous function is w_{I_ϕ}-continuous.

Proof: Let f be a w_{I_ϕ}-continuous function and let V be a closed set in (Y, σ). Then $f^{-1}(V)$ is w_{I_ϕ}-closed set in (X, τ, I). Since every w_{I_ϕ}-closed set is w_{I_ϕ}-closed. Hence $f^{-1}(V)$ is w_{I_ϕ}-closed set in (X, τ, I). Therefore f is w_{I_ϕ}-continuous.

Example 2.22: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{d\}, \{a,b,c\}, X\}$, $\sigma = \{\phi, \{a\}, Y\}$ and $I = \{\phi, \{b\}\}$. Let the function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ be the identity function. Then the function f is w_{I_ϕ}-continuous but not w_{I_ϕ}-continuous.

Theorem 2.23: A map $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is w_{I_ϕ}-continuous iff the inverse image of every closed set in (Y, σ) is w_{I_ϕ}-closed in (X, τ, I).

Proof: Necessary: Let V be a closed set in (Y, σ). Since f is w_{I_ϕ}-continuous, $f^{-1}(V)$ is w_{I_ϕ}-closed in (X, τ, I). By our assumption $f^{-1}(V) = X - f^{-1}(V)$, hence $f^{-1}(V)$ is w_{I_ϕ}-closed in (X, τ, I).

Sufficiency: Assume that the inverse image of every closed set in (Y, σ) is w_{I_ϕ}-closed in (X, τ, I). Let V be a closed set in (Y, σ). By our assumption $f^{-1}(V) = X - f^{-1}(V)$ is w_{I_ϕ}-closed in (X, τ, I), which implies that $f^{-1}(V)$ is w_{I_ϕ}-closed in (X, τ, I). Hence f is w_{I_ϕ}-continuous.

Remark 2.24:
(i) The union of any two w_{I_ϕ}-continuous function is w_{I_ϕ}-continuous.
(ii) The intersection of any two w_{I_ϕ}-continuous function is need be not w_{I_ϕ}-continuous.

Theorem 2.25: Let $f : (X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ and $g : (Y, \sigma, I_2) \rightarrow (Z, \eta, I_3)$ be any two functions. Then the following hold.
(i) $g \circ f$ is w_{I_ϕ}-continuous if f is w_{I_ϕ}-continuous and g is continuous.
(ii) $g \circ f$ is w_{I_ϕ}-continuous if f is w_{I_ϕ}-irresolute and g is continuous.
(iii) $g \circ f$ is w_{I_ϕ}-irresolute if f is w_{I_ϕ}-irresolute and g is irresolute.

Proof:
(i) Let V be a closed set in Z. Since g is continuous, $g^{-1}(V)$ is closed in Y. w_{I_ϕ}-continuous of f implies, $f^{-1}(g^{-1}(V))$ is w_{I_ϕ}-closed in X and hence $g \circ f$ is w_{I_ϕ}-continuous.
(ii) Let V be a closed set in Z. Since g is w_{I_ϕ}-irresolute, $g^{-1}(V)$ is w_{I_ϕ}-closed in Y. Since f is w_{I_ϕ}-irresolute, $f^{-1}(g^{-1}(V))$ is w_{I_ϕ}-closed in X. Hence $g \circ f$ is w_{I_ϕ}-continuous.
(iii) Let V be a w_{I_ϕ}-closed set in Z. Since g is w_{I_ϕ}-irresolute, $g^{-1}(V)$ is w_{I_ϕ}-closed in Y. Since f is w_{I_ϕ}-irresolute, $f^{-1}(g^{-1}(V))$ is w_{I_ϕ}-closed in X. Hence $g \circ f$ is w_{I_ϕ}-irresolute.

Theorem 2.26: Let $X = A \cup B$ be a topological space with topology τ and Y be a topological space with topology σ. Let $f : (A, \tau/A) \rightarrow (Y, \sigma)$ and $g : (B, \tau/B) \rightarrow (Y, \sigma)$ be w_{I_ϕ}-continuous maps such that $f(x) = g(x)$ for every $x \in A \cup B$. Suppose that A and B are w_{I_ϕ}-closed sets in X. Then the combination $a : (X, \tau, I) \rightarrow (Y, \sigma)$ is w_{I_ϕ}-continuous.

Proof: Let F be any closed set in Y. Clearly $a^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$ where $C = f^{-1}(F)$ and $D = g^{-1}(F)$. But C is w_{I_ϕ}-closed in A and D is be w_{I_ϕ}-closed in B and so C is w_{I_ϕ}-closed in X. Since we have proved that if $B \subseteq A \subseteq X$, B is w_{I_ϕ}-closed in A and B is w_{I_ϕ}-closed in X, then B is w_{I_ϕ}-closed in X. Also $C \cup D$ is w_{I_ϕ}-closed in X. Therefore $a^{-1}(F)$ is w_{I_ϕ}-closed in X. Hence a is w_{I_ϕ}-continuous.
continuous maps such that \(f(x) = g(x) \) for every \(x \in A \cap B \).

Suppose that \(A \) and \(B \) are \(wIg \)-closed sets in \(X \). Then the combination \(\alpha : (X, \tau, I) \to (Y, \sigma) \) is \(wIg \)-continuous.

Proof: Let \(F \) be any closed set in \(Y \). Clearly \(\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F) = C \cup D \) where \(C = f^{-1}(F) \) and \(D = g^{-1}(F) \). But \(C \) is \(wIg \)-closed in \(A \) and \(A \) is be \(wIg \)-closed in \(X \) and so \(C \) is \(wIg \)-closed in \(X \). Since we have proved that if \(B \subseteq A \subseteq X \), \(B \) is \(wIg \)-closed in \(A \) and \(A \) is \(wIg \)-closed in \(X \), then \(B \) is \(wIg \)-closed in \(X \). Also \(C \cup D \) is \(wIg \)-closed in \(X \). Therefore \(\alpha^{-1}(F) \) is \(wIg \)-closed in \(X \). Hence \(\alpha \) is \(wIg \)-continuous.

References

8. Maragathavalli S, Suresh N, Revathi A. Weakly \(I_g \)-closed sets and weakly \(I_{ag} \)-closed sets in ideal topological spaces, (communicated).