Comparative study of nitroglycerine and dexamethasone as adjuncts to lignocaine in intravenous regional anaesthesia

Ajai Vikram Singh, Surinder Singh

Abstract

The study evaluated 120 adult patients of either sex belonging to ASA grade 1 and 2, aged 20 to 60 years were randomly allocated into 3 groups of 40 each. Group 1 – lignocaine (L), Group 2 – lignocaine and nitoglycerine (LN), Group 3 – lignocaine and dexamethasone (LD). Patients were premedicated with 0.07 mg/kg midazolam and 0.01 mg/kg atropine which were administered intramuscularly 45 min prior to surgical procedure. They were monitored for mean arterial blood pressure (MAP), oxygen saturation (SPO2) and heart rate (HR) in the operating room. Two venous cannulae were placed, one in dorsum of the operative hand and the other in the opposite hand for crystalloid infusion. Operative hand was exsanguinated with an esmarch bandage, a double cuffed pneumatic tourniquet was placed around the upper arm and proximal cuff was inflated to 250 mm Hg. Regional anaesthesia was in group 1 (LN) 200 microgram nitroglycerine plus 3mg/kg lignocaine 2% diluted with saline to a total of 40 ml and in group 2 (LD) 8mg of dexamethasone plus 3mg/kg lignocaine 2% in 40 ml volume of normal saline and in group 3 (L) 3 mg/kg lignocaine 2% diluted in normal saline to a total of 40ml. The solution was injected over 90 seconds. Sensory block was assessed by pin prick every 30 seconds. Motor function was assessed by asking the subject to flex and extend his/her wrist and fingers. After sensory and motor block onset, the operative tourniquet (distal cuff) was inflated to 250 mm Hg and the proximal tourinquet was released and surgery was started. MAP, HR and SPO2 were monitored before and after tourniquet application and in every 5 minute interval intra-operatively and after tourniquet. Assessment of tourniquet pain scores was made on the basis of the Visual Analogue Scale (VAS) {0= no pain and 10= worst pain imaginable} measured before and after tourniquet application. The demographic data of all the groups was comparable. The percentage of males and females patients was in group 1, 80% and 20% in group 2 and 77% and 23% in group 3. The mean duration of surgery in group 1 was 44.0± 10.5 minutes, in group 2 was 41.2± 9.7 minutes and group 3 was 43.3± 9 minutes. The addition of 200microgram nitroglycerine improved the speed of onset, quality of anaesthesia, prolonged the sensory and motor block recovery time, increased the duration of post-operative analgesia. The addition of 8 mg dexamethasone improved the quality of anaesthesia but did not cause significant difference in time to first request. Based on the study, it may be said that the addition of nitroglycerine and dexamethosone to lignocaine Intra venous regional analgesia definitely improved the quality of anaesthesia.

Keywords: Intra Venous Regional Analgesia, Double Cuff Pneumatic Tourniquet, Esmarch Bandage, Lignocaine, Nitroglycerine, Dexamethasone.

1. Introduction

Anaesthesia is not only limited to general anaesthesia but advances were made in the fields of regional anaesthesia and analgesia also. Harvey Cushing coined the term “Regional Anaesthesia” in 1902. In older days cocaine was the first effective local anaesthetic. Corning (1885) recommended the use of esmarch’s bandage to arrest local circulation prolonging the cocaine induced block and decreasing the uptake of local anaesthetic from the tissues. Intra Venous Regional Anaesthesia (IVRA) was first discovered by August Gustav Bier in 1908 and now this block is popular by his name i.e. Bier block for anaesthesia in hand and forearm. In this method circulation is occluded in a segment of arm with two tourniquets and then injecting a diluted local anaesthetic through an Intra venous canula. This resulted in prompt analgesia between the two tourniquets and slower onset of anaesthesia in distal part of the limb. He quoted “I have therefore used a new avenue, the blood vessel, to get the anaesthetic agent to the end apparatus of the nerves as well to the nerve trunks.”
The technique gained popularity in 1960 when Holmes used Lidocaine in place of Procaine. Lidocaine remains the standard local anaesthetic agent. The principle applied is that of isolating the vascular supply to the distal extremity by proximally placed tourniquet. The limb is first exsanguinated prior to inflating the tourniquet and the isolated vascular segment is injected with a weak local anaesthetic solution that produces rapid onset of analgesia. This technique is limited to procedures lasting less than an hour because of increasing discomfort from the tourniquet. Intra Venous Regional Anaesthesia is easy to administer, reliable and cost effective. It is an effective method of producing anaesthesia for extremity surgery with success rates from 94% - 98%. Normal sensation and motor power returns almost immediately after cuff release. The ideal IVRA solution should have rapid onset, reduced dose of local anaesthetic, reduced tourniquet pain and prolonged post deflation analgesia. At present this is achieved by addition of adjuncts like opioids, NSAIDs, dexmedetomidine, muscle relaxant, potassium and alkalinization with sodium bicarbonate. Drugs selected as adjuncts to local anaesthetic agents potentiate a block by either altering nerve conduction or via peripheral nociceptor binding.

Lidocaine is one of the least toxic local anaesthetics used in IVRA with dose of 3 mg/kg administered as 0.5% solution. The lower concentration (0.5%) acts on the sensory nerve endings and the small nerves whereas the higher concentration (2%) acts on both nerve trunks and the nerve endings. Nitroglycerine has similar effect like magnesium sulphate when added with lidocaine for IVRA. End products of nitroglycerine produces pain modulation in the central and peripheral nervous system.

Dexamethasone has a potent anti-inflammatory effect. The addition of dexamethasone to lidocaine for IVRA in patients undergoing hand surgery improves post operatives analgesia during the first post-operative day. There are two theories how IVRA produces block. One is the anaesthetic agent entering the venous system produces block by blocking the peripheral nerves running with the venous structures. Other theory is that local anaesthetic leaves the vein and blocks small distal branches of peripheral nerves.

2. Aims of Study- The present clinical study was undertaken to evaluate the effects of combinations of lignocaine and nitroglycerine and lignocaine and dexamethasone for Intra Venous Regional Anaesthesia to access motor block, sensory block, tourniquet pain and post-operative analgesia and compare results with lignocaine administered alone.

3. Material and Method- A randomized prospective study was done on 120 patients of ASA grade I and II of age 20 – 60 years of either sex posted for hand or forearm surgery likely to get completed within 1 hour at VCSGGMS&RI Srinagar (Garhwal).

4. Exclusion Criteria
- Reynaud’s disease
- Sickle cell anaemia
- Peripheral or central neurological diseases
- Cardiac conduction block
- Scleroderma
- Skeletal muscle disorders
- Severe hypotension
- Paget’s disease

5. Group Allocation
The patients were allocated into 4 groups of 30 each
1. Group LN- lignocaine and nitroglycerine
2. Group LD- lignocaine and dexamethasone
3. Group L- lignocaine alone

6. Observations- The present study was conducted on 120 patients of ASA grade I and II of age 20 – 60 years of either sex posted for hand or forearm surgery likely to get completed within 1 hour. These patients were randomly allocated into 3 groups of 40 patients each.
Group LN, Group LD and Group L.

Patients Characteristics

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>Group LN</th>
<th>Group LD</th>
<th>Group L</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>43.0±11.0</td>
<td>40.6±12.1</td>
<td>35.4±11.3</td>
<td>0.088</td>
</tr>
<tr>
<td>Weight (kgs)</td>
<td>58.5±9.3</td>
<td>60.3±8.5</td>
<td>58.6±8.1</td>
<td>0.705</td>
</tr>
<tr>
<td>Duration of surgery (min)</td>
<td>44.0±10.5</td>
<td>41.2±9.7</td>
<td>43.3±9.0</td>
<td>0.175</td>
</tr>
<tr>
<td>Onset of sensory block (min)</td>
<td>3.5±0.8</td>
<td>5.0±1.7</td>
<td>7.0±1.7</td>
<td>0.000</td>
</tr>
<tr>
<td>Onset of motor block (min)</td>
<td>4.1±0.5</td>
<td>5.2±1.9</td>
<td>7.5±1.8</td>
<td>0.000</td>
</tr>
<tr>
<td>VAS score at 5 min Before tourniquet deflation</td>
<td>1.1±0.8</td>
<td>1.3±0.9</td>
<td>1.6±1.2</td>
<td>0.052</td>
</tr>
<tr>
<td>VAS score at 10 min Before tourniquet Deflation</td>
<td>1.6±0.8</td>
<td>1.2±1.1</td>
<td>1.5±1.1</td>
<td>0.106</td>
</tr>
<tr>
<td>VAS score at 20 min Before tourniquet Deflation</td>
<td>0.9±1.1</td>
<td>1.5±1.4</td>
<td>2.0±0.9</td>
<td>0.002</td>
</tr>
<tr>
<td>VAS score at 40 min Before tourniquet Deflation</td>
<td>1.9±1.1</td>
<td>2.3±1.1</td>
<td>3.0±0.7</td>
<td>0.001</td>
</tr>
<tr>
<td>VAS score at 60 min Before tourniquet Deflation</td>
<td>2.7±1.1</td>
<td>1.5±1.3</td>
<td>2.2±0.9</td>
<td>0.000</td>
</tr>
<tr>
<td>VAS score at 2 Hrs After tourniquet Deflation</td>
<td>2.5±1.2</td>
<td>2.8±0.9</td>
<td>3.3±0.7</td>
<td>0.0046</td>
</tr>
<tr>
<td>VAS score at 4 Hrs After tourniquet Deflation</td>
<td>2.9±1.0</td>
<td>2.9±1.1</td>
<td>3.6±1.6</td>
<td>0.033</td>
</tr>
<tr>
<td>VAS score at 6 Hrs After tourniquet Deflation</td>
<td>3.1±1.0</td>
<td>2.6±0.9</td>
<td>3.2±0.8</td>
<td>0.007</td>
</tr>
<tr>
<td>VAS score at 12 Hrs After tourniquet Deflation</td>
<td>0.9±0.8</td>
<td>1.0±1.1</td>
<td>1.3±1.2</td>
<td>0.491</td>
</tr>
<tr>
<td>VAS score at 24 Hrs After tourniquet Deflation</td>
<td>1.1±0.9</td>
<td>1.0±0.9</td>
<td>1.0±0.8</td>
<td>0.782</td>
</tr>
<tr>
<td>Sensory block Recovery time (min)</td>
<td>6.8±1.8</td>
<td>12.2±4.4</td>
<td>3.3±1.1</td>
<td>0.000</td>
</tr>
<tr>
<td>Motor block recovery Time (min)</td>
<td>7.6±1.9</td>
<td>13.0±3.8</td>
<td>3.9±1.4</td>
<td>0.000</td>
</tr>
<tr>
<td>Time of injection of First dose of analgesic (in min)</td>
<td>195.7±112.9</td>
<td>55.0±36.5</td>
<td>48.2±31.3</td>
<td>0.000</td>
</tr>
<tr>
<td>Total no. of doses of Analgesic required</td>
<td>1.3±0.5</td>
<td>1.4±0.6</td>
<td>2.0±0.6</td>
<td>0.000</td>
</tr>
</tbody>
</table>

7. Discussion- Intra Venous Regional Anaesthesia is technically simple and reliable. It is executed by applying pressure to the proximal extremity with the use of a pneumatic tourniquet isolating the limb from systemic circulation and then injecting local anaesthetic solution in the isolated limb. Lidocaine is the local anaesthetic most
commonly chosen for this technique. This technique has
been limited by tourniquet pain and the inability to provide
post-operative analgesia. One of the problems with IVRA, as
compared with peripheral nerve blocks, is that there is no
prolonged analgesic effect after tourniquet release.
Numerous attempts to reduce the severity of tourniquet
discomfort improve the quality of block and prolong post-
operative analgesia have been made by adding a wide range
of agents to the local anaesthetic for the Bier’s block.
According to this study, the sensory and motor block onset
times were statistically shorter in nitroglycerine group as
compared to control group. The mean time of onset of
sensory and motor block in dexamethasone group, results
were statistically not significant when compared with control
group. While doing the intergroup comparison, we found that
although all the results were statistically significant, the
mean time of onset of sensory and motor block was earliest
in nitroglycerine group.
Tourniquet pain (VAS scores before tourniquet deflation)-
• VAS scores were lower in nitroglycerine and
dexamethasone group as compared to control group.
Sensory and Motor Block Recovery Time-
Our finding is comparable with finding of Turan et al. (2005)
who observed that the mean time of recovery from sensory
and motor block is prolonged in nitroglycerine group as
compared to control group.
Post-Operative Analgesia (VAS scores after tourniquet
deflation)-
After 2, 4 and 6 hours of tourniquet deflation, the difference
in VAS was statistically significant but after 12 and 24 hours,
the difference in VAS was statistically insignificant in all the
3 groups as compared to the control group.
Time of Injection of First Dose of Analgesic (minutes)-
There was statistically significant difference in time of
injection of first dose of analgesic in all the two groups
compared to the control group but in intergroup comparison,
it was longest in nitroglycerine group and shortest in
dexamethasone group. Our results are consistent with the
study by Sen et al. (2006) [12], the time to first Post-operative
analgesic request in nitroglycerine group was statistically
significant. In study by Bigat et al. (2006) [13] time to first
analgesic requirements was shorter in dexamethasone group
and statistically significantly different from control group.
Our study demonstrated that the addition of 200microgram
nitroglycerine to lignocaine for IVRA improves the speed
of onset and the quality of anaesthesia, prolong the sensory and
motor block recovery time, increase the duration of post-
operative analgesia and do not cause significant side-effects.
In our study, the tourniquet was not deflated before 30
minutes and the tourniquet deflation was performed by the
cyclic deflation technique at the end of surgery. These
techniques, combined with the short half-life of NTG, may
reduce the frequency and severity of unwanted side-effects.
The addition of 8mg dexamethasone to IVRA improves the
quality of anaesthesia, increases the duration of post-
operative analgesia, decreases the onset of sensory and motor
block and prolongs the sensory and motor block recovery
time. Many studies have shown that local steroid application
can have an analgesic effect.
In our study, according to the intergroup comparison we
concluded that the onset of sensory and motor block was
earliest and the duration of post-operative analgesia was also
prolonged in nitroglycerine group.
8. Conclusion
In this study it is concluded that the addition of
nitroglycerine and dexamethasone to lignocaine in intra
venous regional anaesthesia definitely improves the quality
of anaesthesia to a variable extent.
Onset of sensory and motor block was earliest and duration
of post-operative analgesia was also prolonged in
Nitroglycerine group. The sensory and motor block recovery
times were prolonged in Dexamethasone group.
9. References
1. Bier A. A new method for local anaesthesia in the
2. Holmes C. McK. Intra venous regional anaesthesia: A
useful method of producing analgesis of limb. The
3. Henderson CL, Warriner CB, McEwan JA, Merrick PM.
A North American survey of intravenous regional
4. Biscoping J. Intravenous regional anaesthesia of the arm.
5. Brown EM, McGriff JT, Malinowski RW. Intra venous
regional anaesthesia (Bier’s block): Review of 20 years
experience. Canadian Journal of Anaesthesia 1989;
reduces tourniquet pain during intra venous regional
2003; 28:120-123.
7. Kennedy BR, Duthie AM, Parbrook GD, Carr TL. Intra
8. Hutchinson DT, McClinton MA. Upper extremity
tourniquet tolerance. J Hand Surg Am 1993; 18:206-
210.
9. Raj P, Carcia C, Burloson J, Jenkins MT. The site of
action of intravenous regional anaesthetics. Anesth Analg
1972; 51(5):776-786.
anaesthesia. Acta Anesthesiol Scand Supplement
XXXVI, 1969.
11. Lai YY, Chang CL, Yeh FC. The site of action of
lidocaine in intra venous regional anaesthesia. Ma Zui
Xue Za Zhi 1993; 31(1):31-34.
12. Sen S, Ogur B, Aydin ON, Ogurlu M, Gursay F, Savk
O. The analgesic effect of nitroglycerine added to
lidocaine on intra venous regional anaesthesia. Anesth
Analg 2006; 102:916-920.
N, Ertok E. Does dexamethasone improve the quality of
intravenous regional anaesthesia and analgesia? A
randomized, controlled clinical study. Anesth Analg
2006; 102:605-609.