

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2015; 1(9): 04-07 www.allresearchjournal.com Received: 03-06-2015 Accepted: 05-07-2015

V Rajendran

Assistant Professor, Department of Mathematics, KSG College, Coimbatore, TN.

P Sathishmohan

Assistant Professor, Department of Mathematics, KSG College, Coimbatore, TN.

K Indirani

Associate Professor, Department of Mathematics, Nirmala College for women, Coimbatore.

On Nano Generalized Star Closed Sets in Nano Topological Spaces

V Rajendran, P Sathishmohan, K Indirani

Abstract

The purpose of this paper is to define and study some nano-closed sets namely, nano g*-closed sets, nano g*s-closed sets, nano g*p-closed sets and nano g*r-closed sets are analysed.

Keywords: Nano g*-closed sets, nano g*s-closed sets, nano g*p-closed sets and nano g*r-closed sets.

1. Introduction

Levine [5] introduced the class of g-closed sets in 1970. Lellis Thivagar [4] introduced Nano topological space with respect to a subset X of a universe which is defined interms of lower and upper approximations of X. He has also defined Nano closed sets Nano-interior and Nano-closure of a set. Bhuvaneswari (1, 2, 3 & 7) introduced Nano g-closed, Nano gs-closed, Nano α g-closed, Nano α g-closed, Nano g α -closed and Nano gr and Nano rg-closed sets.

Definition 1.1 [6]

A subset A of a topological space (X, τ) is called a generalized star closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

Definition 1.2 [4]

Let U be a non-empty finite set of objects called the universe and R be an equivalence relation. Elements belongings to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$

- (i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and its denoted by $L_R(X)$.
 - That is $L_R(X) = U_{X \in U} \{R(X) : R(X) \subseteq X\}$ where R(X) denotes the equivalence class determined by X.
- (ii) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$.
 - That is $U_R(X) = U_{X \in U} \{R(X) : R(X) \cap X \neq \Phi\}$
- (iii) The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not X with respect to R and it is denoted by $B_R(X)$.

That is $B_R(X) = U_R(X) - L_R(X)$.

Property 1.3 [4]

If (U, R) is an approximation space and $X, Y \subseteq U$, then

- $\bullet \quad L_R(X) \subseteq X \subseteq U_R(X)$
- $L_R(\Phi) = U_R(\Phi) = \Phi$ and $L_R(U) = U_R(U) = U$
- $U_R(X \cup Y) = U_R(X) \cup U_R(Y)$
- $U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y)$
- $\bullet \quad \ \ L_R(X \cup Y) \supseteq L_R(X) \cup L_R(Y)$
- $L_R(X \cap Y) = L_R(X) \cap L_R(Y)$
- $L_R(X) \subseteq L_R(Y)$ and $U_R(X) \subseteq U_R(Y)$ whenever $X \subseteq Y$
- $U_R(X^C) = [L_R(X)]^C$ and $L_R(X^C) = [U_R(X)]^C$
- $U_R[U_R(X)] = L_R[U_R(X)] = U_R(X)$
- $L_R[L_R(X)] = U_R[L_R(X)] = L_R(X)$

Correspondence: V Rajendran

Assistant Professor, Department of Mathematics, KSG College, Coimbatore, TN.

Definition 1.4 [4]

Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \Phi, U_R(X), L_R(X), B_R(X)\}$ where $X \subseteq U$. Then by Property 1.3, $\tau_R(X)$ satisfies the following axioms.

- U and $\Phi \in \tau_R(X)$.
- The union of the elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.
- The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ is a topology on U called the Nano topology on U with respect to X. $(U, \tau_R(X))$ is called the Nano topological space. Elements of the Nano topology are known as Nano open sets in U. Elements of $[\tau_R(X)]^C$ are called Nano closed sets with $[\tau_R(X)]^C$ being called dual Nano topology of $\tau_R(X)$.

Remark 1.5 [4]

If $\tau_R(X)$ is the Nano topology on U with respect to X. Then the set

B = {U, L_R(X), B_R(X)} is the basis for $\tau_R(X)$.

Definition 1.6 [4]

If $(U, \tau_R(X))$ is a nano topological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then

- The Nano interior of the set A is defined as the union of all nano open subsets contained in A and is denoted by Nint(A). Nint(A) is the largest nano open subset of A.
- The Nano closure of the set A is defined as the intersection of all nano closed sets containing A and is denoted by Ncl(A). Ncl(A) is the smallest nano closed set containing A.

Definition 1.7

Let $(U, \tau_R(X))$ be a nano topological space and $A \subseteq U$. Then A is said to be

- (1) Ng-closed ^[1] if Ncl(A) \subseteq V whenever A \subseteq V and V is Nano-open in U.
- (2) Ngr-closed ^[7] if Nrcl(A) \subseteq V whenever A \subseteq V and V is Nano-open in U.
- (3) Ngs-closed ^[2] if $Nscl(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano-open in U.
- (4) $\operatorname{Ng}\alpha$ -closed ^[3] if $\operatorname{N}\alpha \operatorname{cl}(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano-open in U.

1. Nano Generalized Star Closed Set

Throughout this paper $(U, \tau_R(X))$ is a Nano topological space with respect to X where $X \subseteq U$, R is an equivalence relation on U, U/R denotes the family of equivalence classes of U by R.

Definition 2.1

Let $(U, \tau_R(X))$ be a nano topological space. A subset A of $(U, \tau_R(X))$ is called

- (i) Nano generalized star closed set (briefly Ng* closed), if $Ncl(A) \subseteq V$ whenever $A \subseteq V$ and V is nano g-open.
- (ii) Nano generalized star semi closed set (briefly Ng*s-closed) if $Nscl(A) \subseteq V$ whenever $A \subseteq V$ and V is nano g-open.
- (iii) Nano generalized star pre closed set (briefly Ng*p-closed) if Npcl(A) \subseteq V whenever A \subseteq V and V is nano g-open.
- (iv) Nano generalized star regular closed set (briefly Ng*r-closed) if $Nrcl(A) \subseteq V$ whenever $A \subseteq V$ and V is nano g-open.

Example 2.2

Let $U = \{a, b, c, d\}$ with $U/R = \{a, c, \{b,d\}\}$ and $X = \{a, b\}$. Then $\tau_R(X) = \{U, \Phi, \{a\}, \{b,d\}, \{a,b,d\}\}$ which are nano open sets.

- \checkmark The nano closed sets = {U, Φ , {c}, {a,c}, {b,c,d}}
- \checkmark The nano semi closed sets = {U, Φ, {a}, {c}, {a,c}, {b,d}, {b,c,d}}
- \checkmark The nano pre closed sets = {U, Φ, {a}, {b}, {c], {d}, {a,c}, {b,c}, {c,d}, {a,b,c}, {a,c,d}, {b,c,d}}
- The nano regular closed sets = $\{U, \Phi, \{b\}, \{c\}, \{d\}, \{a,c\}, \{b,c\}, \{c,d\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\}\}$
- The nano generalized star semi closed sets = {U, Φ, {a}, {c}, {a,c}, {b,d}, {a,b,d}, {b,c,d}}
- \checkmark The nano generalized star pre closed sets = {U, Φ, {a},{b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}
- \checkmark The nano generalized star regular closed sets = {U, Φ, {a},{b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}
- The nano generalized star closed sets are $\{U, \Phi, \{c\}, \{a,c\}, \{b,c\}, \{c,d\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\}\}$

Theorem 2.3: A subset A of $(U, \tau_R(X))$ is nano g^* -closed if nano cl(A) - A contains no nonempty nano g^* -closed set.

Proof: Suppose if A is nano g*-closed. Then $Ncl(A) \subseteq V$ where $A \subseteq V$ and V is nano g-open. Let Y be a nano g-closed subset of Ncl(A) - A. Then $A \subseteq Y^C$ and Y^C is nano g-open. Since A is Ng*-closed, $Ncl(A) \subseteq Y^C$ implies $Y \subseteq [Ncl(A)]^C$. That is $Y \subseteq Ncl(A)$ and $Y \subseteq [Ncl(A)]^C$ implies $Y \subseteq \Phi$. So Y is nonempty.

Theorem 2.4: If A and B be nano g^* -closed, then $A \cup B$ is nano g^* -closed.

Proof: Let A and B be nano g*-closed sets in (U, $\tau_R(X)$).V is nano g-open sets in U and Ncl(B) \subseteq W where B \subseteq W and W is nano g-open. Since A and B are subsets of V and W A U B is a subset of VUW and V&W is nano g-open. Then Ncl(A \cup B) = Ncl(A) \cup Ncl(B) \subseteq VUW, which implies that A \cup B is nano g*-closed.

Remark 2.5: The intersection of any two nano g^* -closed sets in $(U, \tau_R(X))$ is nano g^* -closed in $(U, \tau_R(X))$.

Proof: Let A and B are any two nano g*-closed sets. $A \subseteq V$, V is an nano g-open and $B \subseteq V$, V is nano g-open. Then $Ncl(A) \subseteq V$, $Ncl(B) \subseteq V$. Therefore $Ncl(A \cap B) \subseteq V$, V is nano g-open. Since A and B are nano g-closeds. Hence $A \cap B$ is a nano g*-closed set.

Example 2.6: Let $U = \{a, b, c, d, e\}$ with $U/R = \{\{a, b\} \{c, e\}, \{d\}\}$. Let $X = \{a, d\}$ then $\tau_R(x) = \{U, \Phi, \{d\}, \{a, b, d\}, \{a, b\}\}$ and the nano closed sets are $\{U, \Phi, \{c, e\}, \{a, b, c, e\}, \{c, d, e\}\}$. The nano g^* -closed sets are $\{U, \Phi, \{c, e\}, \{a, c, e\}, \{b, c, e\}, \{c, d, e\}, \{a, b, c, e\}, \{a, c, d, e\}, \{b, c, d, e\}\}$. Let $A = \{c, e\}$ and $B = \{c, d, e\}$ and $A \cap B = \{c, e\}$ is also nano g^* -closed set.

Theorem 2.7: Every nano closed set is nano g^* -closed. **Proof:** Let A be a nano closed subset of U and $A \subseteq V$, V is nano g-open in U. since A is nano g-closed, $Ncl(A) = A \subseteq V$, where V is nano g-open in U. Therefore, A is nano g^* -closed set.

Remark: 2.8 Converse of the above Theorem need not be true, which can be seen from the following example.

Example 2.9: In the example 2.6, the sets {a, c, e}, {a, c, d, e} are nano g*-closed set but not nano closed set.

Theorem 2.10: Every nano g*-closed set is nano g-closed.

Proof: Let A be nano g^* -closed set in V. Let V be open set such that $A \subseteq V$. Since every nano open set is nano g-open. We have $Ncl(A) \subseteq V$. Therefore A is nano g-closed.

Remark 2.11: Converse of the above theorem need not be true, which can be seen from the following example.

Example 2.12: In the example 2.6, the set {a, c, d} is nano g-closed but not nano g*-closed set.

Theorem 2.13: Every nano g*-closed set is nano gr-closed.

Proof: Let A be nano g^* -closed in U.Let V be nano open set such that $A \subseteq V$.Since every nano open set is nano gopen.We haveNrcl(A) \subseteq Ncl(A) \subseteq V implies Nrcl(A) \subseteq V.Therefore A is nano gr-closed.

Example 2.14: Let $U = \{a, b, c, d\}$ with $U/R = \{a, c, \{b,d\}\}$ and $X = \{a, b\}$. Then the nano topology $\tau_R(X) = \{U, \Phi, \{a\}, \{b,d\}, \{a,b,d\}\}$. The set $\{b\}$ and $\{b, c\}$ are nano gr-closed set but not nano g*-closed set.

Theorem 2.15: Every nano g^* -closed set is nano $g\alpha$ -closed set.

Proof: Let A be nano g*-closed in U.Let V be nano open set such that $A \subseteq V$.Since every nano open set is nano g-open. We haveN α cl(A) \subseteq Ncl(A) \subseteq V implies N α cl(A) \subseteq V.Therefore A is nano g α -closed.

Example 2.16: Let $U = \{a, b, c\}$ with $U/R = \{\{a\}, \{b, c\}\}$ and $X = \{a,b\}$. Then the nano topology $\tau_R(X) = \{U, \Phi, \{a\}, \{b,c\}\}$. The set $\{b\}$ is nano $g\alpha$ -closed set but not nano g^* -closed set.

Theorem 2.17: Every nano g*-closed set is nano gs-closed set.

Proof: Let A be nano g^* -closed in U.Let V be nano open set such that $A \subseteq V$.Since every nano open set is nano gopen. We haveNscl(A) \subseteq Ncl(A) \subseteq V implies Nscl(A) \subseteq V.Therefore A is nano gs-closed.

Example 2.18: Let $U = \{a, b, c, d\}$ with $U/R = \{a, \{d\}, \{b,c\}\}$ and $X = \{a,c\}$. Then the nano topology $\tau_R(X) = \{U, \Phi, \{a\}, \{b,c\}, \{a,b,c\}\}$. The set $\{b, c\}$ is nano gs-closed set but not nano g*-closed set.

Theorem 2.19: If A is nano g^* -closed and $A \subseteq B \subseteq Ncl(A)$, then B is nano g^* -closed.

Proof: Let $B \subseteq V$ where V is nano g-open in $\tau_R(X)$. Then $A \subseteq B$ implies $A \subseteq V$. Since A is nano g*-closed, $Ncl(A) \subseteq V$. Also $B \subseteq Ncl(A)$ implies $Ncl(B) \subseteq Ncl(A)$. This $Ncl(B) \subseteq V$ and so B is nano g*-closed.

Theorem 2.20: For each $a \in U$, either $\{a\}$ is nano g-closed or $\{a\}^C$ is nano g^* -closed in $\tau_R(X)$.

Proof: Suppose {a} is not nano g-closed in U. Then $\{a\}^C$ is not nano g-open and the only Nano g-open set containing $\{a\}^C$ is $V \subseteq U$. That is $\{a\}^C \subseteq U$. Therefore $Ncl\{a\}^C \subseteq U$ which implies $\{a\}^C$ is nano g^* -closed set in $\tau_R(X)$.

Theorem 2.21: Every nano g*-closed set is nano g*s-closed set

Proof: Let A be a nano g^* -closed set of U and $A \subseteq V$, V is nano g-open in U. Since A is nano g^* -closed, $Ncl(A) = A \subseteq V$. That $Ncl(A) \subseteq V$, also $Nscl(A) \subseteq Ncl(A) \subseteq V$, where V is nano g-open in U. Hence $Nscl(A) \subseteq V$. Therefore A is nano g^* s-closed set.

Example 2.22: Let $U = \{a, b, c, d, e\}$ with $U/R = \{\{a, b\}, \{c, e\}, \{d\}\}$ and $X = \{a, d\}$. Then $\tau_R(X) = \{U, \Phi, \{d\}, \{a, b, d\}, \{a, b\}\}$. The set $\{a, b\}$ is nano g*s-closed set but not nano g*-closed set.

Theorem 2.23: Every nano g*-closed set is nano g*p-closed set.

Proof: Let A be a nano g^* -closed set of U and $A \subseteq V$, V is nano g-open in U. Since A is nano g^* -closed, $Ncl(A) = A \subseteq V$. That is $Ncl(A) \subseteq V$. Also $Npcl(A) \subseteq Ncl(A) \subseteq V$, where V is nano g-open in U. Hence $Npcl(A) \subseteq V$ therefore A is nano g^* p-closed set.

Example 2.24: In Example 2.2, the set {a} is nano g*p-closed set but not nano g*-closed set.

Theorem 2.25: Every nano g*-closed set is nano g*r-closed set.

Proof: Let A be a nano g^* -closed set of V and $A \subseteq V$, V is nano g-open in U. Since A is nano g^* -closed, $Ncl(A) = A \subseteq V$. That is $Ncl(A) \subseteq V$. Also $Nrcl(A) \subseteq Ncl(A) \subseteq V$, where V is nano g-open in U. Hence $Nrcl(A) \subseteq V$ therefore A is nano g^* r-closed.

Example 2.26: In Example 2.2, the set {a, b, d} is nano g*r-closed set but not nano g*-closed set.

3. Nano Generalized Star - Open Sets

Definition 3.1: A subset A of a nano topological space $(U, \tau_R(X))$ is called nano generalized star-open (briefly nano g*-open) if A^C is nano g*-closed.

Theorem 3.2: (i) Every nano open set is nano g*-open. (ii) Every nano g*-open set is nano g-open.

Proof: Proof follows from the Theorems 2.7 & 2.10.

Remark 3.3: For subsets A, B of a nano topological space $(U, \tau_R(X))$.

- (i) U Ng*(int(A)) = Ng*cl(U A)
- (ii) \cup Ng*(cl(A)) = Ng*int(U A)

Theorem 3.4: A subset $A \subseteq U$ is nano g^* -open iff $F \subseteq Nint(A)$ whenever F is nano g-closed set and $F \subseteq A$.

Proof: Let A be nano g*-open set and suppose $F \subseteq A$ where F is nano g-closed. Then U-A is nano g*-closed set contained in the nano g-open set U-F. Hence $Ncl(U-A) \subseteq U-F$ and $U-Nint(A) \subseteq U-F$. Thus $F \subseteq Nint(A)$. Conversely, if F is nano g-closed set with $F \subseteq Nint(A)$ and $F \subseteq A$, then $U-Nint(A) \subseteq U-F$. Thus $Ncl(U-A) \subseteq U-F$. Hence U-A is nano g*-closed set and A is nano g*-open set.

Theorem 3.5: If Nint(A) \subseteq B \subseteq A and if A is nano g*-open, then B is nano g*-open.

Proof: Let Nint(A) \subseteq B \subseteq A, then $A^{C} \subset B^{C} \subset Ncl(A^{C})$, where A^{C} is nano g*-closed and hence B^{C} is also nano g*-closed by Theorem 2.19. Therefore, B is nano g*-open.

Remark 3.6: If A is nano g^* -closed, then Ncl(A) - A is nano g^* -open.

Proof: Let A be nano g^* -closed. Let F be nano g-closed such that $F \subseteq Ncl(A) - A$. Then $F = \Phi$. Since Ncl(A) - A cannot have any non-empty nano g-closed set. Therefore, $F \subseteq Nint(Ncl(A) - A)$. Hence Ncl(A) - A is nano g^* -open.

References

- 1. Bhuvaneshwari K, Mythili Gnanapriya K. Nano Generalized closed sets, International Journal of Scientific and Research Publications. 2014; 14(5):1-3.
- 2. Bhuvaneshwari K, Ezhilarasi K. On Nano semigeneralized and Nano generalized semi-closed sets, IJMCAR, 2014; 4(3):117-124.
- 3. Bhuvaneshwari K, Thanga Nachiyar R. On Nano generalized α -closed sets, (communicated).
- 4. Lellis Thivagar M, Carmel Richard. On Nano forms of weakly open sets, International Journal of Mathematical and Statistics Invention. 2012; 1(1):31-37.
- 5. Levine N. Generalized closed sets in topology, Rend. Cire. Math. Palermo, 1963; 19(2):89-96.
- 6. Veerakumar MKRS. Between closed sets and g-closed sets Mem. Fac. Sci. Kochin University (Math) 2000; 21:1-19,
- 7. Sulochana Devi P, Bhuvaneshwari K. On Nano regular generalized and Nano generalized regular closed sets, IJETT 2014; 13(8):386-390.