Newton’s backward interpolation: Representation of numerical data by a polynomial curve

Biswajit Das and Dhritikesh Chakrabarty

Abstract
In order to reduce the numerical computations associated to the repeated application of the existing interpolation formula in computing a large number of interpolated values, a formula has been derived from Newton’s backward interpolation formula for representing the numerical data on a pair of variables by a polynomial curve. Application of the formula to numerical data has been shown in the case of representing the data on the total population of India corresponding as a function of time. The formula is suitable in the situation where the values of the argument (i.e. independent variable) are at equal interval.

Keywords: Interpolation, newton’s backward interpolation formula, polynomial curve, representation of numerical data

1. Introduction
Interpolation, which is the process of computing intermediate values of a function from the set of given values of the function {Hummel (1947), Erdos & Turan (1938) et al}, plays significant role in numerical research almost in all branches of science, humanities, commerce and in technical branches. A number of interpolation formulas namely Newton’s Forward Interpolation formula, Newton’s Backward Interpolation formula, Lagrange’s Interpolation formula, Newton’s Divided Difference Interpolation formula, Newton’s Central Difference Interpolation formula, Stirlings formula, Bessel’s formula and some others are available in the literature of numerical analysis {Bathe & Wilson (1976) [1], Jan (1930), Hummel (1947) et al}.

In case of the interpolation by the existing formulae, the value of the dependent variable corresponding to each value of the independent variable is to be computed afresh from the used formula putting the value of the independent variable in it. That is if it is wanted to interpolate the values of the dependent variable corresponding to a number of values of the independent variable by a suitable existing interpolation formula, it is required to apply the formula for each value separately and thus the numerical computation of the value of the dependent variable based on the given data are to be performed in each of the cases. In order to get rid of these repeated numerical computations from the given data, one can think of an approach which consists of the representation of the given numerical data by a suitable polynomial and then to compute the value of the dependent variable from the polynomial corresponding to any given value of the independent variable. However, a method/formula is necessary for representing a given set of numerical data on a pair of variables by a suitable polynomial. One such formula has been developed in this study. The formula has been derived from Newton’s backward interpolation formula. The formula obtained has been applied to represent the numerical data, on the total population of India since 1971, by a polynomial curve.

2. Newton’s Backward Interpolation Formula
Then Newton’s backward interpolation formula is

\[f(x) = f(x_0) + v \frac{f(x_1)}{1!} + \frac{v(v+1)}{2!} \frac{f(x_2)}{2!} + \frac{v(v+1)(v+2)}{3!} \frac{f(x_3)}{3!} + \frac{v(v+1)(v+2)(v+3)}{4!} \frac{f(x_4)}{4!} + \cdots + \frac{v(v+1)(v+2)\cdots(v+n-1)}{n!} \frac{f(x_n)}{n!} \]

Where,
- \(f(x) \) is the value of the dependent variable at \(x \)
- \(x_0, x_1, x_2, \ldots, x_n \) are the values of the independent variable
- \(v \) is the number of steps

Correspondence
Biswajit Das
Research Scholar, Assam Down Town University, Panikhaiti, Guwahati, Assam, India

ISSN Print: 2394-7500
ISSN Online: 2394-5869
Impact Factor: 5.2
IJAR 2016; 2(10): 513-517
www.allresearchjournal.com
Received: 14-08-2016
Accepted: 15-09-2016
where $v = \frac{x-x_n}{h}$

$$f'(x_n) + \frac{f'(x_{n-1})}{h} + \frac{f'(x_{n+1})}{2h^2} + \frac{f'(x_n)}{h^2} + \frac{f'(x_{n+1})}{3h^3} + \frac{f'(x_n)}{4h^4} + \ldots$$

This formula can be expressed as

$$f'(x) = C_0 + C_{n-1}(x-x_n) + C_{n-2}(x-x_n)(x-x_{n-1}) + C_{n-3}(x-x_n)(x-x_{n-1})(x-x_{n-2}) + \ldots$$

where $C_0 = f(x_n)$

$$C_{n-1} = \frac{f'(x_{n-1})}{h}$$

$$C_{n-2} = \frac{f'(x_{n-2})}{2h^2}$$

$$C_{n-3} = \frac{f'(x_{n-3})}{3h^3}$$

$$C_{n-4} = \frac{f'(x_{n-4})}{4h^4}$$

$$\ldots$$

$$C_0 = \frac{f(x_0)}{n!h^n}$$

3. Representation of Numerical Data by Polynomial Curve:

By algebraic expansion, one can obtain that

$$(x-x_n)(x-x_{n-1})(x-x_{n-2})$$

Also,

$$(x-x_n)(x-x_{n-1}) = \sum_{i=0}^{n-1} (x-x_{n-i}) (x-x_{n-i})$$

$$= \sum_{i=0}^{n-1} (x-x_{n-i}) (x-x_{n-i})$$
In general,

\[(x - x_n)(x - x_{n-1})(x - x_{n-2})(x - x_{n-3}) \ldots \ldots \ldots (x - x_1)\]

\[= x^n - \sum_{i=0}^{n-1} \sum_{j=i+1}^{n} \sum_{k=j+1}^{n} \sum_{l=k+1}^{n} \sum_{m=l+1}^{n} a_{ijklm} \cdot x_i \cdot x_j \cdot x_k \cdot x_l \cdot x_m \]

Now, equation (2.2), can be expressed as

\[f(x) = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots \ldots \ldots + C_n x^n \to (3.2)\]

This is of the form

\[f(x) = \sum_{i=0}^{n} C_i x^i \]

As defined above, is the required formula for representing a given set of numerical data on a pair of variables by a suitable polynomial we have aimed at.

Note: The formula is valid for representing a given set of numerical data on a pair of variables by a suitable polynomial under the following two conditions:

(i) values of the argument are at equal interval
(ii) the value of \(x\) corresponding to which the value of \(y\) is to be interpolated is in the last half of the series

4. An Example of the Formula:

The following table shows the data on total population of India corresponding to the years:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population</td>
<td>548159652</td>
<td>683329097</td>
<td>846302688</td>
<td>1027015247</td>
<td>1210193422</td>
</tr>
</tbody>
</table>

Taking 1971 as origin and changing scale by 1/10, one can obtain the following table for independent variable \(x\) (representing total population of India):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(f(x_i))</td>
<td>548159652</td>
<td>683329097</td>
<td>846302688</td>
<td>1027015247</td>
<td>1210193422</td>
</tr>
</tbody>
</table>

Here \(x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4\)

\(f(x_0) = 548159652, f(x_1) = 683329097, f(x_2) = 846302688, f(x_3) = 1027015247\)

\(f(x_4) = 1210193422\)

Difference Table
Now, \(C_4 = f(x_4) = 1210193422 \)
\(C_3 = \frac{f(x_3)}{x_3} = 183178175 \)
\(C_2 = \frac{V^2 f(x_2)}{2!x_2^2} = \frac{2465616}{2.1.1} = 1232808 \)
\(C_1 = \frac{V^3 f(x_1)}{3!x_1^3} = \frac{-15273352}{3.2.1.1} = -2545558.66 \)
\(C_0 = \frac{V^4 f(x_0)}{4!x_0^4} = \frac{-5208174}{4.3.2.1.1} = -217007.25 \)

\(\therefore \) The polynomial is

\[
f(x) = A_0 + A_1 x + A_2 x^2 + A_3 x^3 + A_4 x^4 \]

Where \(A_0 = C_4 - C_3 x_4 + C_2 x_4 x_3 - C_1 x_2 x_3 x_4 + C_0 x_1 x_2 x_3 x_4 \)

\[
= 1210193422 - 183178175 \times 4 + 1232808 \times 4 \times 3 + 2545558.66 \times 2 \times 3 \times 4 - 217007.25 \times 1 \times 2 \times 3 \times 4
\]

\[
= 1210193422 - 732712700 + 14793696 + 61093407.84 - 5208174
\]

\[
= 1286808525.84 - 73920874
\]

\[
= 548159651.84
\]

\[
A_1 = C_3 - C_2 (x_3 + x_4) + C_1 (x_2 x_3 + x_2 x_4 + x_3 x_4) - C_0 (x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)
\]

\[
= 183178175 - 1232808 \times (3 + 4) - 2545558.66 \times (6 + 8 + 12) + 217007.25 (6 + 8 + 12 + 24)
\]

\[
= 183178175 - 1232808 \times 7 - 2545558.66 \times 26 + 217007.25 \times 50
\]

\[
= 183178175 - 8629656 - 66184525.16 + 10850362.5
\]

\[
= 194028537.5 - 74814181.16
\]

\[
= 119214356.34
\]

\[
A_2 = C_2 - C_1 (x_2 + x_3 + x_4) + C_0 (x_1 x_2 + x_1 x_3 + x_2 x_4 + x_1 x_4 + x_3 x_4)
\]

\[
= 1232808 + 2545558.66 (2 + 3 + 4) - 217007.25 (2 + 3 + 6 + 8 + 4 + 12)
\]

\[
= 1232808 + 2545558.66 \times 9 - 217007.25 \times 35
\]

\[
= 1232808 + 22910027.94 - 7595253.75
\]

\[
= 24142835.94 - 7595253.75
\]

\[
= 16547582.19
\]

\[
A_3 = C_1 - C_0 (x_1 + x_2 + x_3 + x_4)
\]

\[
= -2545558.66 + 217007.25 (1 + 2 + 3 + 4)
\]

\[
= -2545558.66 + 217007.25 \times 10
\]

\[
= -2545558.66 + 217007.25
\]

\[
= -375486.16
\]

\[
A_4 = C_0 = -217007.25
\]

\[
\therefore (i) \Rightarrow f(x) = 548159651.84 + 119214356.34 x + 16547582.19 x^2 - 375486.16 x^3 - 217007.25 x^4 \]

\[
\text{(ii) Which is the required polynomial}
\]

Now, putting \(x = 0, 1, 2, 3, 4 \) in (ii), we have

\[
f(0) = 548159651.84
\]

\[
= 548159652
\]

\[
f(1) = 548159651.84 + 119214356.34 \times 1 + 16547582.19 \times 1 - 375486.16 \times 1 - 217007.25 \times 1
\]

\[
= 548159651.84 + 119214356.34 + 16547582.19 - 375486.16 - 217007.25
\]

\[
= 683921590.37 - 592493.41
\]

\[
= 683329096.96
\]

\[
= 683329097
\]

\[
f(2) = 548159651.84 + 119214356.34 \times 2 + 16547582.19 \times 4 - 375486.16 \times 8 - 217007.25 \times 16
\]

\[
= 548159651.84 + 238428712.68 + 66190328.76 - 3003889.28 - 3472116
\]

\[\sim 518\]
5. Conclusion
The formula described by equation (3.2) can be used to represent a given set of numerical data on a pair of variables, by a polynomial. The degree of the polynomial is one less than the number of pairs of observations. The polynomial that represents the given set of numerical data can be used for interpolation at any position of the independent variable lying within its two extreme values. The approach of interpolation, described here, can be suitably applied in inverse interpolation also. Newton’s backward interpolation formula is valid for estimating the value of the dependent variable under the following two conditions:
(i) Values of the argument are at equal interval
(ii) The value of x corresponding to which the value of y is to be interpolated is in the last half of the series. Therefore, the formula derived here is valid for representing a set of numerical data on a pair of variables by a polynomial under these two conditions only. Consequently, there is necessity of searching for some formula for representing a set of numerical data on a pair of variables by a polynomial if the value of the independent variable corresponding to which the value of the dependent variable is to be estimated lies in the last half of the series of the given values, which are at equal interval, of the independent variable. Moreover, there is also necessity of searching for some formula for representing a set of numerical data on a pair of variables by a polynomial if the given values of the independent variable are not at equal interval.

Reference