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On the negative Pell equation y* =21x*-3

G Janaki and S Vidhya

Abstract
. . . . . 2 2 . .
The binary quadratic equation represented by the negative Pellian Y~ = 21X" —=3is analyzed for its

distinct integer solutions. A few interesting relations among the solutions are also given. Further,
employing the solutions of the above hyperbola, we have obtained solutions of other choices of
hyperbolas and parabolas.
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1. Introduction
Pell’s equation is any Diophantine equation of the form — ny2 =1, when Nis a given

positive non-square integer has always positive integer solutions. This equation was first
studied extensively in India, starting with Brahmagupta, who developed the Chakravala

k

integer and N € (k2 +4, k?+ 1), positive integer solutions of the equations — ny2 =14

method to Pell’s equation and other quadratic indeterminate equations. When ™ is a positive

and X* — I’ly2 = %1, have been investigated by Jones in 1. In [l % 8] some special Pell
equation and their solutions are considered. J.L. Lagrange proved that the positive Pell
equation y2 = Dx* +1 has infinitely many distinct solutions whereas the negative Pell
equation y2 = Dx* —1 does not always have a solution. In B!, an elementary proof of a
ceriterium for the solvability of the Pell equation — Dy2 = —1 where D is any positive
non-square integer has been presented. For example, the equations y2 =3x* -1 s

y> =7x> —4 have no integer solutions whereas Y = 65X —1,y” =202x> —1have

integer solutions. In this context, one may refer > >, More specifically, one may refer,
“The On-line Encyclopedia of integer sequences” (A031396,A130226,A031398) for values

of D for which the negative Pell equation y2 = Dx? —1is solvable or not.

In this communication, the negative Pell equation given by y* = 21x> —3 is considered and

infinitely many integer solutions are obtained. A few interesting relations among the
solutions are presented.

2. Method of Analysis
The negative Pell equation representing hyperbola under consideration is

y? =216 -3 (1)

whose smallest positive integer solutionis X, =2, Y, =9.

To obtain the other solutions of (1), consider the Pellian equation
y? =21x7 +1

whose initial solution is Yo =12, 70 = 55and the general solution (Yn R Vn )is given by
~ 462~
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o 1 < 1
X =T > n=_ n
"5 /—Zlgn y )

where f, = [(55+12\/E)”+1 +(55—12\/E)””}, g, = [(55+12\/E)”+1 —(55—12\/ﬁf+1}

Applying Brahamagupta lemma between (X0 R yo) and (Yn R Vn ), the other integer solutions of (1) are given by

f

Yo :%[9 fo+ 2@9,1]

Xn+1 =

1
Z—Jﬁ[sz” +9gn]

Some numerical examples of X and Y satisfying (1) are given in the table below

n Xn+1 yn+]

0 218 999

1 23978 109881
2 2637362 12085911

3. Observations

We observe some interesting relations among the solutions which are presented below
The recurrence relations satisfied by the solutions of (1) are given by

1.

Xnis — 1 10Xn+2 +Xp = 0
Yo _lloymz Yo = 0

2.
3.

24'yn+2 = Xn+3 =X,

+1°

504xn+2 = yn+3 - yn+1'

4. Each of the following expressions is a perfect square.

)

ii)

iii)

iv)

vi)

vii)

viii)

ix)

xi)
Xii)

xiii)

84X,,., —18Y,,.,+6
3
4662X,,,, —42X,,,, +168
84
i — 42%,,,, +18480
9240
4615002x,,,, —41958x,,,, +1512
756
3052X,,,, =6Y,,,5 +110
55
335692X,,., —6Y,,,, +12098
6049
28X,,,; —6606Y,.., +110
55
3052X,,,; —666Y,,., +2

335692X,,,5 —666Y,,,, +110

512778x

55
28X,,,4 — 73254y, ., +12098
6049
3052x,,,, —73254y,,,, +110
55

335692x,,., — 73254Y,,., +2

Yonis = 109y2n+2 +18
9
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Yones — 11989y, ., +1980

Xiv)
990
w109y, —119989y2n+3 +18

5. Each of the following expressions is a cubical integer.

i) 28X;p.3 = 0Y3p,5 330
111X, — X;,,4 +660

ii) 5
gy 12209% X, +72600
111
220
12209, —111x,, 660
2
L 9156x,,., —18y.,., + 54450
A
165
,  1007076x,,,~18y.,,;+598851
V1
18147
vy M =198y, +54450
165
iy 156X, —1298y3n+4 +990
b 1007076x,,,, ~1998y,, , +54450
X
165
| 84Xy, —219762y,,, +5988510
X
18147
) O156X ~219762y,, , +54450
X1
165
5 1007076x,,, ~219762y,,  +990
X11
3
iy Dans = 23978y, +653400
1980
iy Dane =218y, +5940
18
v B —4793566y3n+4 +11880

4. Remarkable Observations
On employing linear combinations among the solutions of (1), one may generate integer solutions for our choices of
hyperbolas which are presented in the table I below:

Table |

Hyperbola (X,Y)

84'yn+1 — 378Xn+1 )

i) (84xn+1 -18Y,.> \/ﬁ

9156y,,, —41958x.,
X2-Y?=36 i (9156xm2—1998yw, y 2@ ZJ

” (1007076)(“3_219762%%’ 1007076yn+3—4615002xn+3j

V21
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42X —4578x
27X? —588Y 2 =762048 (4662Xn+1—42Xn+2, 02 o nﬂj
32046X. . —3524766X
2 _y2_ 769167X,,, —6993X, .5, n+3 o
X2-Y?2=63504 [ i 3 = J
84y . —41958x
i) 9156x.,,, —18Y, ,, n+2 n+1j
1 ( e 7
9156y,,, — 378X
i 84x,,, —1998y,.,, it mj
X2 —Y2 =108900 } [ ’ I 21
i) [1007076Xn+2 ~1998y,,,, 22 ‘\/‘;15002% j
) [9156Xn+3 ~219762y,,,. 1007076yn:/22_‘141958xn+3j
i) (1 007076X,,, —18Y,.5, 84Yp.3 — jz_ll 5002X,,, J
X2 -Y2=1317254436
. 1007076y, ,, — 378X,
i) 84x, ., —219762y, ., o
222y, =2y,
4X* -81Y* =5184 (2 vy =218y, Mj
8IY" =518 Voo —218Y,., o
484X % —9801 2 189747360 ( 11989 12209ynﬂ_ymj
yn+3 yn+19 \/i
219762y, ., —1998y
2_y2_ 436y,., —47956y,.,, n+2 i3
X2-Y2=5184 ( v v s j

On employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of
parabolas which are presented in the table II below:

Table 11
Parabola (X ,Y)
84y, —378x
Y2 =3X - 84x,. , —18y, ,+6, —Yni Mj
3X-36 ( 2042 Yaonia 21
42x .., —4578X
Y2 =27X —9072 4662X,,., — 42Xy, +168, ——n2 Mj
7 7X =907 ( 2n+2 2043 21
32046x ., —3524766x
Y2 =126X — 63504 769167x,,., —6993X,.., +252, ns3 n+zj
6X —6350 ( et - =
28y, —13986X, .
) (3052x2n+2—6y2m3+110, Yoz 5 IJ
i (28x2m3—666y2n+2+110, 3052yn+l—126xn+2J
2 J21
Y esX Il 3052 1538334x
iii) (335692742n+3 - 666Y,,.,+110, Y3 n+2 J
J21
335692y.., —13986X
iv) 3052x,,., — 73254Y,,., + 110, ne2 Mj
v ( In+d Yonss N
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Y? =6049X —146361604

! (335692%“2 6y, +12008, 2Vns™ 1538334Xnﬂj

V21
335692y, ,, — 126X, J

V21

i) (28x2m4 —73254y,,,, +12098,

i) (3052X2n+3 - 666 Yonis T 2, 3052yn+2 _ 13986Xn+2 j
V21
v 335692 1538334
i (335692x2m4 —73254y,.,, +2, Yies s j
V21
222y, -2y
= - s =109y, o +18, = _—Ine2
9Y? =16X —576 [y23 Voo _ J
24418y, -2y
= B n+ -11989 N+ +1980, n+l n+3
9Y? =1760X —6969600 (yz ) Vo = j
73254y,,., — 666y j
2 _ _ 109 e —11989 . +18, n+2 n+3
Y?=16X -576 ( Yoros Vo =
5. Conclusion

In this paper, we have presented infinitely many integer solutions for the hyperbola represented by the negative Pell equation

y2 =21x*—3. As the binary quadratic diophantine equations are rich in variety, one may search for the other choices of

negative Pell equations and determine their integer solutions along with suitable properties.
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