Phytochemical study of *Abutilon indicum* Linn.

Medicinal plant

Neeta Mishra, SK Agnihotri

Abstract

Herbal medicines are natural products and their phytoconstituents vary depending on time and region, processing and storage. Variations in the collection, processing or storage of an herb could impact its efficacy profile. Since prior knowledge regarding appropriate collection and usage of most medicinal plants exists in tradition, it can be used as a guide to quality standardization. The present paper deals with the phytochemical screening of Root & Leaf extract of *Abutilon indicum*. From the literature survey it is found that a very little work is done on root & leaf part of plant for on these lines. So, our aim is to find out again various standardization limits according WHO guideline. During phytochemical screening it was observed the loss of drying, ash values and extractive values etc. for root & leaf part of drug with a view to control the quality of crude drug.

Keywords: Phytochemical, screening, medicinal plant, *Abutilon indicum*.

1. Introduction

Medicinal plants are the nature's gift to human beings to make disease free healthy life. It plays a vital role to preserve our health. India is one of the most medico-culturally diverse countries in the world where the medicinal plant sector is a part of time-honored tradition that is a respected even today. Here, the main traditional systems of medicine include Ayurveda, Unani and Siddha. (Kotnis, et al. 2004) [1] With the emerging worldwide interest in adopting and studying traditional systems and exploiting their potential based on different health care systems, the evaluation of the rich heritage of traditional medicine is essential (Gupta, 2010) [2]. In India different parts of medicinal plants have been used for curing various diseases from ancient times. In this regard, one such plant is *Abutilon indicum*. The *Abutilon* L. genus of the Malvaceae family comprises about 150 annual or perennial herbs, shrubs or even small trees widely distributed in the tropical and subtropical countries of America, Africa, Asia and Australia. Some of the plants belonging to the species are amongst much acclaimed Ayurvedic herbs and in the recent past there has been a renewed scientific interest in exploring the specie (Sikorska and Matlawska, 2008) [3].

Distribution: *Abutilon indicum* (Linn.) Sweet family Malvaceae commonly called as ‘Country mallow’ (English), ‘Kanghi’ (Hindi) and ‘Atibala’ (Sanskrit). It is a perennial shrub, softly tomentose and up to 3 m in height. The plant is found in India, Sri Lanka, topical regions of America and Malesia (Anonymous, 1985) [4]. It is found as a weed in sub-Himalayan tracts, hills up to 1200 m and in hotter parts of India.
Botanical Description: The leaves are ovate, acuminate, toothed, rarely subtrilobate and 1.9-2.5 cm long. The flowers are yellow in color, peduncle jointed above the middle. The petioles 3.8-7.5 cm long; stipules 9 mm long; pedicels often 2.5-5 mm long, axillary solitary, jointed very near the top; calyx 12.8 mm long, divided in to middle, lobes ovate, apiculate and corolla 2.5 cm diameter, yellow, opening in the evening. The fruits are capsule, densely pubescent, with conspicuous and horizontally spreading beaks. The stems are stout, branched, 1-2 m tall, pubescent. The seeds are 3-5 mm, reniform, tubercled or minutely stellate-hairy, black or dark brown (Kirtikar and Basu, 1994; Prajapati, et al. 2003; Chopra, et al. 1956 & Nadakarni, 1995) [5-8].

Traditional Uses: Almost all the parts of Abutilon indicum are of medicinal importance and used traditionally for the treatment of various ailments. The roots of the plant are considered as demulcent, diuretic, in chest infection and urethritis. The infusion of the plant is prescribed in fevers as a cooling medicine and is considered useful in strangury, haematuria and in leprosy. The leaves are found to be good for ulcer and as a fomentation to painful body. The decoction of the leaves is used in toothache, tender gums and internally for inflammation of bladder. The bark is used as febrifuge, anthelmintic, astringent and diuretic.

Drying of Plant material:

Drying of Plant material: Roots & Leaf parts were separated from the Abutilon indicum plant then washed with water. Kept in sun light for thirty minutes and then dried under shade at room temperature for 15 days. Grounded to a coarse powder through filter paper taking precaution against excessive loss.

Physicochemical Investigation (Khandelwal, 2005) [12]

Loss on drying: Loss on drying is the loss of mass expressed as per cent w/w. Loss on drying determines both water and volatile matter in the crude drug. Moisture is an inevitable component of crude drug, which must be eliminated as far as possible. An accurately weighed quantity of about 2 g of powdered drug was taken in a tared glass petridish. The powder was distributed evenly. The petridish kept open in vacuum oven and the sample was dried at a temperature between 100 to 105°C for 2 hrs until a constant weight was recorded. Then it was cooled in a desiccator to room temperature, weighed and recorded. % Loss on drying was calculated using the following formula.

\[
\text{% Loss on drying} = \frac{\text{Loss in weight of the sample}}{\text{Weight of the sample}} \times 100
\]

Determination of Ash values: Ash values are helpful in determining the quality and purity of a crude drug, especially in the powdered form. The objective of ashing vegetable drugs is to remove all traces of organic matter, which may otherwise interfere in an analytical determination.

a) Total Ash value
It is the total amount of material remaining after ignition. This includes both “Physiological ash”, which derived from the plant tissue itself, and “Non physiological ash”, which is residue of the extraneous matter. Total ash value was found out after putting the drug (about 2 gm) in crucible by using furnace at temp. of 600 °C for 2hr. Now calculated the percentage yield of ash value with reference to air dried drug.

\[
\text{Wt. of acid insoluble ash} \times 100 = \frac{\text{Wt. of crude drug taken}}{\text{Wt. of acid insoluble ash}}
\]

b) Acid-Insoluble Ash
It is residue obtained after boiling the total ash with dilute hydrochloric acid, and ignoring the remaining insoluble matter. Boiled the ash for 5 to 10 minutes with 25ml of dilute hydrochloric acid, collected the insoluble matter in a crucible on an ash less filter-paper, ignited, and weighed. Now calculated the percentage yield of acid-insoluble ash with reference to the air-dried drug.

\[
\text{% Acid insoluble ash value} = \frac{\text{Wt. of acid insoluble ash}}{\text{Wt. of crude drug taken}} \times 100
\]

c) Water soluble Ash value: Boiled the total ash for five minutes with 25 ml of water; collected the soluble matter in a crucible, ignited, and weighed. Calculated the percentage or water soluble ash with reference to air dried drug.

Determination of extractive values

Determination of extractive values is useful for evaluation of crude drug. It given idea about the nature of the chemical constituents present in a crude drug.

a) Alcohol soluble extractive value
Macerated 5 gm accurately weighed coarse powdered drug with 100 ml of alcohol (90% v/v) in a stoppered flask for 24 h, shaking frequently during first 6 h. Filtered rapidly through filter paper taking precaution against excessive loss of alcohol. Evaporated 25 ml of alcoholic extract to dryness in a tired dish and weighed it. Calculated the percentage w/w of alcohol soluble extractive with reference to the air-dried drug using following formula.

\[
\text{Wt. of crude drug taken} \times 100 = \frac{\text{Wt. of alcohol soluble extractive}}{\text{Wt. of crude drug taken}}
\]

b) Water soluble extractive value

The procedure as above was followed using chloroform water I.P. instead of alcohol.

3. Results and Discussion

Table 1: Characteristics of powder of Abutilon indicum Root and Leaf.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Reagents</th>
<th>Observation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Iodine solution</td>
<td>Blue colour</td>
<td>Starch grains</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>present</td>
</tr>
<tr>
<td>2.</td>
<td>FeCl3 solution</td>
<td>Blue black</td>
<td>Tannins were</td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour</td>
<td>present</td>
</tr>
<tr>
<td>3.</td>
<td>Lectochloral</td>
<td>Calcium oxalate</td>
<td>Calcium oxalate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>crystals</td>
<td>crystals present</td>
</tr>
</tbody>
</table>
Physicochemical Evaluation for Root
In the present study, Root powder was investigated for the physicochemical characterization according WHO guideline and following results were observed for loss on drying, ash values & extractive values.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Physical constants</th>
<th>Root</th>
<th>Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Loss on drying</td>
<td>5.23</td>
<td>6.67</td>
</tr>
<tr>
<td>2.</td>
<td>Total ash value</td>
<td>7.8</td>
<td>7.4</td>
</tr>
<tr>
<td>3.</td>
<td>Acid-insoluble ash value</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4.</td>
<td>Water soluble ash value</td>
<td>4.30</td>
<td>4.30</td>
</tr>
<tr>
<td>5.</td>
<td>Alcohol soluble extractive value</td>
<td>4.07</td>
<td>3.97</td>
</tr>
<tr>
<td>6.</td>
<td>Water soluble extractive value</td>
<td>9.6</td>
<td>9.36</td>
</tr>
</tbody>
</table>

Mean 5.33 5.45

SD ±3.025 ±2.963

Physicochemical Evaluation for Leaves
In the present study, Leaf powder was investigated for the physicochemical characterization according WHO guideline and following results were found of loss on drying, ash values & extractive values.

4. Summary and Conclusion
In the present study, Root & Leaf of *Abutilon indicum* was subjected to Phytochemical screening study. During the study, various standardization parameters like loss on drying, ash values, extractive values etc. were determined on the Root and Leaf of *Abutilon indicum*. The water soluble extractive value of the crude drug was found to be higher than alcohol soluble extractive value.

5. Acknowledgements
The authors are greatly indebted to principal of Govt. Science P.G. College, Rewa (M.P.) who permitted to carry out this work.

6. References
1. Kotnis MS, Patel P, Menon SN, Sane RT. Reneprotective effect of *Hemisdesmus indicus* a Herbal Drug used in Gentomicin-Induced Renal Toxicity, Nephrology (Carlton), 2004; 3:142-152.