On ternary quadratic equation \(x^2 + xy + y^2 = 12z^2 \)

R Anbuselvi and K Kannaki

Abstract
The Ternary quadratic Diophantine equation given by \(x^2 + xy + y^2 = 12z^2 \) is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

Keywords: Ternary, Quadratic, integral solutions, Polygonal Numbers.

1. Introduction
The ternary quadratic Diophantine equation offers an unlimited field for research because of their variety \([1, 3]\). For an extensive review of various problems, one may refer \([1, 20]\). This communication concerns with yet another interesting ternary quadratic equation \(x^2 + xy + y^2 = 12z^2 \) for determining its infinitely many non-zero distinct integral solutions. Also a few interesting relations among the solutions have been exhibited.

2. Notations used:
- \(t_{3,n} \)-Polygonal number of rank \(n \) with size \(m \)
- \(P_{3n} \)-Tetrahedral number of rank \(n \)
- \(P_{4n} \)-Square pyramidal number of rank \(n \)
- \(P_{5n} \)-Pentagonal pyramidal number of rank \(n \)

3. Method of Analysis
The Ternary Quadratic Diophantine Equation to be solved for its non-zero distinct integral solution is
\[
\begin{align*}
x^2 + xy + y^2 &= 12z^2 \\
\end{align*}
\]

Pattern – I
On substitution of linear transformations \(u \neq v \neq 0 \)
\[
\begin{align*}
x &= u+3v, & y &= u-3v \\
\end{align*}
\]
In (1) leads to \(u^2 + 3v^2 = 4z^2 \) (2)

The corresponding solutions of (3) is the form
\[
\begin{align*}
u &= a^2 - 6ab - 3b^2 \\
v &= a^2 + 2ab - 3b^2 \\
z &= a^2 + 3b^2 \\
\end{align*}
\]
(4)

In view of (4), the solution of (1) can be written as
\[
\begin{align*}
x &= 4a^2 - 12b^2 \\
y &= 6b^2 - 12ab - 2a^2 \\
z &= a^2 + 3b^2 \\
\end{align*}
\]
(5)

Instead of (2) using the transformations \(x = u-3v, \ y = u+3v \) in (1), we get again (3) only. Thus, the integer solutions of (1) are obtained as
\[
\begin{align*}
x &= -2a^2 - 12ab + 6b^2 \\
y &= 4a^2 - 12b^2 \\
z &= a^2 + 3b^2 \\
\end{align*}
\]
(6)
A few interesting properties observed are as follows:
I) \(5x(2a, a) + y(2a, a) \equiv 0 \pmod{4} \)
II) \(x(a, 1) - y(a, 1) - 12t_{1, a} \equiv 0 \pmod{6} \)
III) \(y(1, B) + 2(1, B) - t(64, B) + t(34, B) \equiv 0 \pmod{15} \)
IV) \(x(A, 2) - t_{320t}, A + t_{198}, A \equiv -24 \pmod{26} \)

Each of the following expression represents a nasty numbers.
\[4z(a, b) - x(a, b) \]
\[3\{x(a, b) + 4z(a, b)\} \]
\[x(a, a) + 2y(a, a) \]
\[y(a, a) - 4z(a, a) \]

Pattern – II
Equation (3) can be written as
\[3v^2 - 3z^2 = z^2 - u^2 \]
\[3(v + z)(v - z) = (z + u)z - u \]

Four different choices of solution obtained are as follows:

Choice I
\[X = 2A^2 - 6B^2 + 12AB \]
\[Y = 12B^2 - 4A^2 \]
\[Z = A^2 + 3B^2 \]

A few interesting properties observed are as follows.
I) \(x(1, B) + 12t_{3, B} \equiv 2 \pmod{18} \)
II) \(x(5, B) + 12t_{3, B} \equiv 16 \pmod{66} \)
III) \(x(10, B) + 12t_{3, B} \equiv 74 \pmod{126} \)
IV) \(x(A, 2) - 4t_{3, A} \equiv -2 \pmod{22} \)
V) \(x(A, 4) - 4t_{3, A} \equiv -4 \pmod{46} \)
VI) \(2x(A, A+1) + y(A, A+1) - 48t_{3, A} \equiv 0 \)
VII) \(2x(A, A+1) + y(A, A+1) - 48t_{3, A} \equiv 0 \)
VIII) \(2x(A, A+1)(A+2) + y(A, A+1)(A+2) - 144P_5 \equiv 0 \)
IX) Each of the following expression represents a nasty numbers
(a) \(2x(A, B) + y(A, B) \)
(b) \(y(A, B) + 4z(A, B) \)
(c) \(y(3B, B) \)

Choice II
\[x = -4A^2 + 12B^2 \]
\[y = 2A^2 - 6B^2 - 12AB \]
\[z = A^2 + 3B^2 \]

Choice III
\[X = 2A^2 - 6B^2 + 12AB \]
\[Y = 12B^2 - 4A^2 \]
\[Z = -A^2 - 3B^2 \]

Choice IV
\[X = 2A^2 - 6B^2 - 12AB \]
\[Y = -4A^2 + 12B^2 \]
\[z = -3B^2 - A^2 \]

Pattern – III
Equation (3) can be written as
\[u^2 + 3v^2 = 4z^2 \pmod{1} \]
Assume that \(z = a^2 - 3b^2 \)
Write 1 as \(1 = ((1 + i\sqrt{3})(1 - i\sqrt{3})) \)
\[u + i\sqrt{3}v = \frac{(1 + i\sqrt{3})(1 + i\sqrt{3})(a + i\sqrt{3}b)^2}{2(10)} \]
Equating the real and imaginary parts in
\[u = -a^2 + 3b^2 - 6ab \]
\[v = a^2 - 3b^2 - 2ab \]
Substituting (11) and (12) in (2), the corresponding integer solution of (1) are given by
\[x = 2a^2 - 6b^2 - 12ab \]
\[y = -4a^2 + 12b^2 \]
\[z = a^2 + 3b^2 \]

A few interesting properties observed are as follows.
I) \(x(1, B) + 12t_{3, B} \equiv 2 \pmod{6} \)
II) \(x(2, B) + 12t_{3, B} \equiv 8 \pmod{18} \)
III) \(x(3, B) + 12t_{3, B} \equiv 18 \pmod{30} \)
IV) \(x(4, B) + 12t_{3, B} \equiv 22 \pmod{42} \)
V) \(x(a, 1) - 4t_{3, a} \equiv -6 \pmod{14} \)
VI) \(x(a, 2) - 4t_{3, a} \equiv -24 \pmod{26} \)
VII) \(x(a, 3) - 4t_{3, a} \equiv -16 \pmod{38} \)
VIII) \(x(a, 4) - 4t_{3, a} \equiv -46 \pmod{50} \)
IX) Each of the following expression represents a nasty numbers
(a) \(x(a, a) - 2y(a, a) \)
(b) \(y(a, b) + 4z(a, b) \)
(c) \(2x(a, b) + y(a, b) \)
(d) \(x(a, a) - 2z(a, a) \)

Pattern – IV
Again, Equation (3) can be written as
\[u^2 + 3v^2 = 4z^2 \pmod{1} \]
Assume that \(z = a^2 + 3b^2 \)
Write 1 as \(1 = ((1 + i\sqrt{3})(1 - i\sqrt{3})(a + i\sqrt{3}b)^2 \)
\[\frac{49}{7} \]
Equating the real and imaginary parts in
\[u = 1/7(33b^2 - 11a^2 - 30ab) \]
\[v = 1/7(5a^2 - 15b^2 - 22ab) \]

Our interest is to obtain the integer solutions, so that the values of \(u \) and \(v \) are integers for suitable choices of the parameters \(a \) and \(b \).

Put \(a = 7, b = 7 \)
\(u = 231B^2 - 77A^2 - 210AB \)
\(v = 35A^2 - 154AB - 105B^2 \)
\(z = 49A^2 + 174B^2 \)
Substituting (20) and (21) in (2), the corresponding integer solutions of (1) are given by
\[x = 28A^2 - 84B^2 - 672AB \]
\[y = 546B^2 - 182A^2 - 252AB \]
\[z = 49A^2 + 147B^2 \]

The equation (23) represents non-zero distinct integral solution of (1) on two parameters.
A few interesting properties observed are as follows.
I) \(x(A, 1) - 56t_{3, a} \equiv -84 \pmod{700} \)
II) \(x(A, 3) - 56t_{3, a} \equiv -756 \pmod{2044} \)
Pattern – V

Equation (3) may be equivalent to

\[u^4 + 3v^2 = (2z)^2 \]

(24)

Which is satisfied by

\[u = 3p^2, \quad q^2 \]

(25)

\[v = 2pq \]

(26)

\[z = 1/2 \left(3p^2 + q^2\right) \]

(27)

Our interest is to obtain the integer solutions, so that the values of \(z \) are integers for suitable choices of the parameters \(p \) and \(q \).

put \(p = 2A, \quad q = 2B \) in (25), (26) and (27) we get

\[u = 12A^2 - 4B^2 \]

(28)

\[v = 8AB \]

(29)

\[z = 6A^2 + 2B^2 \]

(30)

Substituting (28) and (29) in (2), the corresponding integer solutions of (1) are given by

\[x = 12A^2 - 4B^2 + 24AB \]

\[y = 12A^2 - 4B^2 - 24AB \]

\[z = 6A^2 + 2B^2 \]

A few interesting properties observed are as follows.

(i) \(x = (A,A) - 24A^2, \quad y = 0 \) (mod 84)

(ii) \(x = (A,7) - 24A^2, \quad y = 0 \) (mod 156)

(iii) \(y = 1(B) + 8tA^2, \quad z = 0 \) (mod 20)

(iv) \(y = 3(B) + 8tA, \quad z = 0 \) (mod 68)

(v) \(x = (A,B) - y = (A, AB), \quad z = 0 \) (mod 12)

(vi) \(x = (A,A+1) - y = (A, A(A+1) - 96A, \quad z = 0 \) (mod 12)

(vii) \(x = (A,(A+1)A), \quad y = (A, A(A+1)(A+2)) - 288PA^2, \quad z = 0 \) (mod 12)

4 Conclusion

In this paper we have presented five different patterns of non-zero distinct integer solutions of the ternary quadratic equation given by \(x^2 + xy + y^2 = 12z^2 \) To conclude, one may search for other patterns of solutions and their corresponding properties.

5 Reference