Sylow p-subgroups and its applications

Dr. Amod Kumar Mishra

Abstract

Let p be a prime st. \(p^n \) devises order of a group G and \(p^{n+1} \) does not divide it G. s.t. \(O(H) = p^n \) is called a sylow p-subgroup of G. there are three postulates of Sylow p-subgroups first theorem shows the existence of a sylow p-subgroup of G for every prime p dividing order of G while. Second theorem shows that any two sylow p-subgroups of G are conjugate and the third theorem says about the number of sylow p-subgroups of G.

Keywords: Conjugate p-subgroups \(O(G) \), \(O(H) \).

Introduction

Let \(p \) be a prime and \(m, a+ve integer \) St. \(p^n\divides O(G) \). Then a subgroup \(H \) of G. St \(O(H) = p^n \) is called a sylow p-subgroup of G. any two sylow p-subgroups of a finite group G are conjugate to one another.

Let \(p \) be sylow p-subgroups of G is of the form \(1+kp \) where \(1+kp\divides O(G) \), \(K \) being a non-negative integer Let \(p \) be a sylow p-subgroups of G. Then the number of sylow p-subgroups of G is eqal to \(\left(\frac{P}{N(P)} \right) \) of G is of the form 1+kp where 1+kp\divides O(G), \(k \) being a none negative integer.

Note: If \(O(G) = p^nq \), \((p, q)=1 \) then the number of sylow p-subgroups is 1+kp where \(1+kp\divides p^nq \).

Example: Let G be a group of order 231. Show that N–Sylon subgroup of G is contained in the centre of G.

Soln: Let \(O(G) = 231 = 3\times7\times11 \)
The number of sylow 11–subgroup of G is \(1+11k \) and \((1+11k)/21 \). Clearly then it is possible if \(k=0 \) so, sylon 11-subgroup H of G is normal in G.
The number of sylo 7–subgroup of G is \(1+7k' \) and \((1+7k')/33 \). So \(k'=0 \), thus, Sylo 7-subgroup k of G is normal in G \(O(H) = 11, O(k) = 7 \)

Now \(O\left(\frac{G}{k}\right) = \frac{3\times7\times11}{7} = 3\times11 \) and \(3\times (11–1) \), Thus \(\frac{G}{k} \) is cyclic, [If \(O(G) = pq \), where \(p, q \) are distinct primes, \(p,q \), \(pxq–1 \), then G is cyclic]. Thus \(\frac{G}{k} \) is cyclic and so \(G \) is abelian. But \(G \) is the smallest subgroup of G such that \(G/H \) is abelian (\(G \) denote the commutator subgroup of G).

\(\therefore \) \(G\subseteq k \Rightarrow O(G) = 1 \) or \(7 \) if \(O(G) = 1 \) Then \(G' \) [\(e \) \(\Rightarrow x^1y^1xy = e \Rightarrow xy = yx \) for all x, y \(\epsilon \) G \(\Rightarrow \) G is abelian \(\Rightarrow G = Z(G) \Rightarrow H\subseteq Z(G) \). Let \(O(G) = 7 \Rightarrow G' = K. \) Clearly H\cap k = \{e\} as O (H\cap k) divides O (H) = 11 and O (k) = 7. Let x \(\epsilon \) H, Y \(\epsilon \) G Then \(x^1y^1xy \epsilon G' = k. \) also \(x^1y^1xy = x^{-1}(y^{-1}xy) \epsilon H \) as H is normal is G

\(\therefore \) \(x^{-1}y^{-1}xy \epsilon H\cap k = \{e\} \Rightarrow xy = yx, y \epsilon G, x \epsilon H \Rightarrow H\subseteq Z(G). \)

If \(p \) is sylow p-subgroup of G Let X \(\epsilon \) N (p) st \(O(x) = p \), then X \(\epsilon \) p. If every p-subgroup of a finite group is contained in some sylow p-subgroup of G.

\(\Rightarrow 1+kp|q \) as \((1+kp, p^n) = 1 \)
of p is the only sylow p-subgroups of G then p is normal in G and if p is normal G then p is only sylow p-subgroups of G. If p is sylow p-subgroups of G to very p-Subgroup of a finite group is contained in some sylow p-subgroups of G.

Aim

In a finite group G no sylow p-subgroups can be properly contained in a p-subgroup. If let G be a finite group and p be a p-subgroup of G, then p is sylow p-subgroups of G if and only of no p-subgroup of G properly contains p. If $O(G) = p$, q, where p, q are distinct prime, $p < q$, $p|q-1$ then it is cyclic. Using sylow's theorem we can find $\neg p-1=1 \mod p$ for every prime p. Let p we a prime dividing $O(G)$ and if $(ab)^p = a^p b^p$ for all a, $b \in G$. then sylow p-subgroups p is normal in G and \normal subgroup N of G. St. $P \cap N = \{e\}$ and $G = PN$ together with G has non trivial centre.

Conclusion

Let G be a finite group and $H \leq G$ suppose p is a prime dividing $O(G)$. Let p be a sylow p-subgroups of H contained in some sylow p-subgroups of G. then $p = S \cap H$. Let G be a finite group and let H be normal in G. If p be a prime dividing $O(G)$. If $(|G:H|, p)=1$ Then H contains every sylow p-subgroups of G for finite group G and p being a prime dividing $O(H)$ where $H \leq G$ then the number of sylow p-subgroups of H is less than or equal to the number of sylow p-subgroups of G.

Let p be a prime dividing $O(G)$ St. if K is normal in G and p is a sylow p-subgroups of G. Then $p \cap K$ is a sylow p-subgroups of G and $\frac{pK}{K}$ is a sylow p-subgroups of G/K.

Every sylow p-subgroups of $\frac{G}{K}$ is of the form $\frac{pK}{K}$ where p is a sylow p-subgroup of G. Let G be a group of order $p q r$, $p < q < r$ being a prime. In this situation some sylow p-subgroup of G is normal in G and then G is can’t be simple.

References