Antimicrobial activity in fruit extract of *Psoralea corylifolia* L. on pathogenic organisms

Patil US and Wanjare PD

Abstract

The increasing prevalence of drug-resistant pathogens has gained the attention of pharmaceutical and scientific communities towards potential antimicrobial agents from plant derived sources. The present research work has been undertaken to study the antimicrobial activity of the methanol extract of *Psoralea corylifolia* L. against some human pathogens like *Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *Staphylococcus aureus*, *Shigella flexneri*, *Streptococcus pneumoniae*, *Klebsiella pneumonia* and fungi *Aspergillus niger* by using agar well diffusion method. Inhibition zones ranged between 4.12 ± 0.22 - 16.24 ± 0.11 mm. Fruit extract inhibited the growth of all tested microorganisms with large zones of inhibition. The standard antibiotics chloramphenicol and miconazole nitrate were found to have zone of inhibitions 10.05 ±0.12-24.12 ±0.20 mm at the concentration of 30 µg/ml. In contrast, the inhibition zone of methanol (negative control) was almost zero for all the tested microorganisms. The spectrum activity of methanolic extract of this plant could be a possible source to obtain new and effective herbal medicines to treat various infectious diseases.

Keywords: Antimicrobial activity, *Psoralea corylifolia* L., methanolic extract, human pathogens, zones of inhibition

Introduction

The use of plant and its products has a long history that began with folk medicine and through the years has been incorporated into traditional and allopathic medicine (Dubey et al. 2011) [7]. Since antiquity, many plant species reported to have pharmacological properties as they are known to possess various secondary metabolites like glycosides, saponins, flavonoids, steroids, tannins, alkaloids and terpenoids which are utilized to combat the disease causing pathogens (Kamali 2010; Hussain et al., 2011) [15, 13]. With the advancement in Science and Technology, remarkable progress has been made in the field of medicine with the discoveries of many natural and synthetic drugs (Preethi et al. 2010) [21]. Antibiotics are indisputably one of the most important therapeutic discoveries of the 20th century that had effectiveness against serious bacterial infections. Despite the huge number of antimicrobial agents for various purposes that already exist the search for new drugs is a continuous task since the target microorganisms often develop new genetic variants which subsequently become resistant to available antimicrobial agents (Enne et al. 2001; Westh et al. 2004) [8, 27].

The world’s attention is now increasing directed toward plant sources for developing antimicrobial drugs, since natural products are considered safer than synthetic ones (Alagesaabopathi, 2011) [8], According to the World Health Organization, medicinal plants would be the best source to obtain a variety of drugs (Ahmad, 2001) [3]. Therefore, such plants should be investigated to better understand their properties, safety and efficacy. There are several published reports describing the antimicrobial activity of various crude plant extracts (Igoli et al. 2005; Alzoreky, 2003) [14] [9]. It is estimated that there are about 2.5 million species of higher plants and the majority of these have not yet been examined for their pharmacological activities (Ram et al 2003) [23].

The different herbal plant extracts are traditionally has been used as anticancer antioxidant, antiulcer, analgesic and anti-diabetic (Pankaj, 2011) [11], and they also having the antiparasitic, antifungal, antibacterial, antimalarial activity, analgesic and anti-inflammatory activity (Acharyya et al. 2011) [11]. Different species of *Psoralea corylifolia* are used as a folk medicine for the treatment of various ailments such as skin diseases, intestinal parasites and warts.
It has been reported that *Psoralea corylifolia* possesses antidiarrhoeal and antidysenteric activity (Shalili *et al*., 2008) [24]. *Psoralea corylifolia* L. belongs to the family fabaceae. An erect, woody, annual herb with horizontally spreading, branches covered by pubescent hairs. Leaves broadly ovate, gland dottet, glabrous. Flowers in pedunculate axillary racemose, purple, pedicel short, calyx hairy, corolla papilinaceous, bluish. Ovary monocarpellary, unilocular. Pods ovoid, indeliscent, black subglobose, gland dotted. Seeds one or two black smooth (Freeman, 2005) [10]. The present research was set up to determine the antimicrobial activity in fruit extract of *Psoralea corylifolia* against some pathogenic bacteria and fungi.

Material and methods

Chemicals and Plant collection

The following ingredients were used for the preparation of nutrient agar media and Potato dextrose media: Agar, Peptone, Sodium chloride. Beef extract, Potato, dextrose water. All other chemicals and analytical reagents were purchased from Hi-media, India, unless stated otherwise. Mature plants of *Psoralea corylifolia*, used for this study was collected from Field area of yavatmal district (M.S.) India.

Preparation of the plant extract

The fresh plants were collected from Field area of yavatmal district (M.S.) India and identified with the help of flora and well known taxonomist. The fruits were washed for 2-3 times with tap water and finally with distilled water. Further air dried in shade for ten days and then dried in an oven at 60°C for one to two days, and finally milled to obtain a coarse powder (Sieve no.80). About 100 grams of powdered material was extracted by maceration in methanol (400 mL) for 14 days with frequent agitation (Freitas *et al*., 1991; Qaisar *et al*., 2012; Venkatanagaraju, 2014) [11, 22, 26]. The mixture was filtered through clean muslin cloth followed by double filtration with Whatman No. 1 filter paper and the filtrate was concentrated by rotary evaporation under vacuum (vacuum pressure: 500 N/m²) al 400°C until a volume of about 15 mL waste reached. Next the concentrate was poured into petri-dishes and brought to dryness in an oven at 60 ⁰C The obtained paste like mass was then stored in paraffin. Sealed petri-dishes in a dark cabinet. The extracts were reconstituted by dissolving in methanol 10 the required concentrations. The reconstituted extracts were maintained at 2-8 °C.

Test microorganisms and growth media

Pure cultures of all experimental bacteria; *Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *Staphylococcus aureus*, *Shigella flexneri*, *Streptococcus pneumonia*, *Klebsiella pneumonia* and fungi *Aspergillus niger* were obtained from the microbial type Culture Collection and Gene Bank Institute of Microbial Technology (IMTECH), Chandigarh. The pure bacterial cultures were maintained on nutrient agar medium and fungal culture on potato dextrose agar (PDA) medium. Each bacterial and fungal culture was further maintained by sub culturing regularly on the same medium and stored at 40°C before use in experiments.

Determination of the antimicrobial activity

Agar well-diffusion method was followed to determine the antimicrobial activity (Didry *et al*, 1998; Esimone *et al*, 1998) [6, 9]. Nutrient agar (gm/l: beef extract, 3g; peptone. 5g; sodium chloride, 5g; agar, 20g) and Potato Dextrose Agar (39 gm/l) plates were swabbed (sterile cotton swabs) with 24h old-broth culture (106-108 bacteria CFU ml-1) of respective bacteria and fungi. Wells (10mm diameter and about 2 cm a part) were made in each of these plates using sterile cork borer. Stock solution of plant extract was prepared at a concentration of 100 mg/mL. About 100 ml of plant extracts was added with sterile syringe into the wells and allowed to diffuse at room temperature for 2hrs. Control experiments comprising inoculums without plant extract.30μg/ml chloramphenicol, and 30μg/ml miconazole nitrate were also used at positive controls for bacteria and fungi, respectively. The plates were incubated at 370°C for 24h for bacteria pathogens and 37 °C for 48h fungal pathogens. The diameter of the inhibition zone (mm) around each well was measured and express as antimicrobial activity. Triplicates were maintained and the experiment was repeated thrice, for each replicates the readings were taken in three different fixed directions and the average values were recorded.

Statistical analysis

The results of the experiment are expressed as mean ± SE of three replicates in each test. The data were evaluated by one-way analysis of variance (ANOVA) followed by Tukey’s multiple pair wise comparison tests to assess the statistical significance.

Results and Discussion

The search for antimicrobials from natural sources has received much attention and efforts have been put in to identify compounds that can act as suitable antimicrobials agent to replace synthetic ones. Phytochemicals derived from plant products serve as a prototype to develop less toxic and more effective medicines in controlling the growth of microorganism (Kelman son *et al*, 2000; Ahmad *et al*, 2001) [16, 2]. these compounds have significant therapeutic application against human pathogens including bacteria. Fungi or virus. Numerous studies have been conducted with the extracts of various plants, screening antimicrobial activity as well as for the discovery of new antimicrobial compounds (Guleria, 2006; Zakaria *et al* 2007) [12, 28]. Therefore, medicinal plants are finding their way into pharmaceuticals, nutraceuticals and food Supplements. In the present investigation, the inhibitory effect of *Psoralea corylifolia* fruits methanolic extract was evaluated against both fungal and bacterial strains. The antimicrobial activity was determined by using agar well diffusion method and the results are summarized in Table 1. Methanolic extract (100.00 mg/ml) of the fruits displayed good antibacterial activity against *Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *Staphylococcus aureus*, *Shigella flexneri*, *Streptococcus pneumonia*, *Klebsiella pneumoniae* and fungi *Aspergillus niger*. Methanolic extract inhibited the growth of all tested microorganisms with large zones of inhibition ranging from 4.12 ± 0.22 - 16.24 ± 0.11 mm. The standard antibiotics chloramphenicol and miconazole nitrate were found to have zone of inhibitions 10.05 ± 0.12-24-12 ±0.20 mm at the concentration of 30 μg/ml In contrast, the inhibition zone of methanol (negative control) was almost zero for all The tested microorganisms. The large inhibition zones exhibited by the extract against *Aspergillus niger* justified the plant use in the treatment of fungal infections.
Fig 1: Plant Habit & Fruits of *Psoralea corylifolia* L.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Zone of Inhibition (mm)</th>
<th>Psoralea corylifolia Fruit</th>
<th>Chloramphenicol</th>
<th>Miconazole nitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>10.46 ± 0.14</td>
<td>12.12 ± 0.14</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>13.12 ± 0.18</td>
<td>20.10 ± 0.22</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>16.24 ± 0.11</td>
<td>ND</td>
<td>24.12 ± 0.20</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>10.22 ± 0.12</td>
<td>14.10 ± 0.26</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>8.06 ± 0.28</td>
<td>10.05 ± 0.12</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>4.12 ± 0.22</td>
<td>12.10 ± 0.16</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>16.24 ± 0.11</td>
<td>ND</td>
<td>24.12 ± 0.20</td>
<td></td>
</tr>
</tbody>
</table>

ND: not determined. The inhibition zone diameter was taken as an average value of triplicate plates for each microorganism at 100 uL of 100 mg/ml crude extract, 30 ug/ml of chloramphenicol and 30 ug/ml of miconazole nitrate.

Conclusion

Bacterial and fungal infections can be treated with the *Psoralea corylifolia*, since it exhibited favourable antibacterial and antifungal activities. On the basis of the present study, further phytochemical analysis is needed to isolate the bioactive compound(s) and assess the antibacterial and antifungal activities against a wider range of pathogenic microorganisms.

Acknowledgements

The authors would like to thanks the Principal Bhartiya Mahavidyalaya, Amravati for providing laboratory facilities and support for this research work.

References

15. Kamali HH, Amir EL. Antibacterial Activity and Phytochemical Screening of Ethanolic Extracts...