MA Gopalan, S Vidhyalakshmi and Presenna Ramanand

Abstract
The binary quadratic equation represented by the positive pellian \(y^2 = 32x^2 + 36 \) is analysed for its distinct integer solutions. A few interesting relations among the solutions are given. Further, employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas, parabolas.

Keywords: Binary quadratic, hyperbola, parabola, pell equation, integral solutions

Introduction
The binary quadratic equation of the form \(y^2 = Dx^2 + 1 \) where \(D \) is non-square positive integer has been studied by various mathematicians for its non-trivial integer solutions when \(D \) takes different integral values [1-4]. For an extensive review of various problems, one may refer [5-20]. In this communication, yet another interesting hyperbola given by \(y^2 = 32x^2 + 36 \) is considered and infinitely many integer solutions are obtained. A few interesting properties among the solutions are presented.

Method of analysis
The diophantine equation under consideration is
\[
y^2 = 32x^2 + 36
\]
(1)
The smallest positive integer solution \((x_0, y_0) \) of (1) is
\[
x_0 = 3, \quad y_0 = 18
\]
To obtain the other solutions of (1), consider the Pell equation
\[
y^2 = 32x^2 + 1
\]
(2)
whose smallest positive integer solution is
\[
x_0 = 3, \quad y_0 = 17
\]
The general solution \((\bar{x}_n, \bar{y}_n) \) of (2) is given by
\[
\bar{y}_n + \sqrt{32} \bar{x}_n = (17 + 3\sqrt{32})^{n+1}, \quad \text{where} \quad n = 0, 1, 2, \ldots
\]
(3)
Since irrational roots occur in pairs, we have
\[
\bar{y}_n - \sqrt{32} \bar{x}_n = (17 - 3\sqrt{32})^{n+1}, \quad \text{where} \quad n = 0, 1, 2, \ldots
\]
(4)
From (3) and (4), solving for \((\bar{x}_n, \bar{y}_n) \), we have
\[
\bar{y}_n = \frac{1}{2} f_n, \quad \bar{x}_n = \frac{1}{2\sqrt{32}} g_n
\]
where
\[
f_n = (17 + 3\sqrt{32})^{n+1} + (17 - 3\sqrt{32})^{n+1}, \quad g_n = (17 + 3\sqrt{32})^{n+1} - (17 - 3\sqrt{32})^{n+1}
\]
Applying Brahmagupta Lemma between the solutions \((x_0, y_0)\) and \((\bar{x}_n, \bar{y}_n)\), the other integer solutions to (1) are given by

\[2\sqrt{32}x_{n+1} = 3\sqrt{32}f_n + 18g_n \quad 2y_{n+1} = 18f_n + 3\sqrt{32}g_n \]

A few numerical examples are given in the Table: 1 below

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_{n+1})</th>
<th>(y_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>0</td>
<td>105</td>
<td>594</td>
</tr>
<tr>
<td>1</td>
<td>3567</td>
<td>20178</td>
</tr>
<tr>
<td>2</td>
<td>121173</td>
<td>685458</td>
</tr>
</tbody>
</table>

A few interesting relations among the solutions are given below

- \[68y_{n+2} - 2y_{n+3} - 2y_{n+1} = 0 \]
- \[x_{n+3} - 34x_{n+2} + x_{n+1} = 0 \]
- \[3y_{n+1} - x_{n+2} + 17x_{n+1} = 0 \]
- \[3y_{n+2} - 17x_{n+2} + x_{n+1} = 0 \]
- \[3y_{n+3} - 577x_{n+2} + 17x_{n+1} = 0 \]
- \[102y_{n+1} - x_{n+3} + 577x_{n+1} = 0 \]
- \[6y_{n+2} - x_{n+3} + x_{n+1} = 0 \]
- \[17y_{n+1} - y_{n+2} + 96x_{n+1} = 0 \]
- \[17y_{n+3} - 577y_{n+2} - 96x_{n+1} = 0 \]
- \[577x_{n+3} - 102y_{n+3} - x_{n+1} = 0 \]
- \[577y_{n+1} - y_{n+3} + 3264x_{n+1} = 0 \]
- \[577y_{n+2} + 289y_{n+3} + 1829568x_{n+1} = 0 \]
- \[3y_{n+1} - 17x_{n+3} + 577x_{n+2} = 0 \]
- \[3y_{n+2} - x_{n+3} + 17x_{n+2} = 0 \]
- \[3y_{n+3} - 17x_{n+3} + x_{n+2} = 0 \]
- \[17y_{n+2} - y_{n+3} + 96x_{n+2} = 0 \]
- \[y_{n+3} - y_{n+1} - 192x_{n+2} = 0 \]
- \[y_{n+3} - 17y_{n+2} - 96x_{n+2} = 0 \]
- \[577y_{n+2} - 17y_{n+3} - 96x_{n+3} = 0 \]
- \[17y_{n+3} - y_{n+2} - 96x_{n+3} = 0 \]
- \[y_{n+1} - 577y_{n+3} + 3264x_{n+3} = 0 \]
- \[y_{n+3} - 34y_{n+2} + y_{n+1} = 0 \]

Each of the following expressions represents a cubical integer:

- \[\frac{1}{108}((36x_{3n+4} - 1188x_{3n+3}) + 3(36x_{n+2} - 1188x_{n+1})) \]
- \[\frac{1}{306}((3x_{3n+5} - 3363x_{3n+3}) + 3(3x_{n+3} - 3363x_{n+1})) \]
- \[\frac{1}{102}((6y_{3n+4} - 1120x_{3n+3}) + 3(6y_{n+2} - 1120x_{n+1})) \]
- \[\frac{1}{1731}((3y_{3n+5} - 19024x_{3n+3}) + 3(3y_{n+3} - 19024x_{n+1})) \]
Each of the following expressions represents a bi-quadratic integer:

\[\frac{1}{108} \left(36x_{2n+3} - 1188x_{4n+2} + 4(36x_{2n+3} - 1188x_{2n+2} + 216) - 216 \right) \]

\[\frac{1}{306} \left(2x_{2n+3} - 3363x_{4n+4} + 4(3x_{2n+3} - 3363x_{2n+2} + 612) - 612 \right) \]

\[\frac{1}{102} \left(6y_{4n+4} - 1120x_{4n+2} + 4(6y_{2n+3} - 1120x_{2n+2} + 204) - 204 \right) \]

\[\frac{1}{1731} \left(3y_{4n+6} - 19024x_{4n+4} + 4(3y_{2n+4} - 19024x_{2n+2} + 3462) - 3462 \right) \]

\[\frac{1}{9} \left(39x_{4n+4} - 3363x_{4n+5} + 4(99x_{2n+4} - 3363x_{2n+3} + 18) - 18 \right) \]

\[\frac{1}{51} \left(19x_{2n+5} - 16x_{4n+5} + 4(99y_{2n+2} - 16x_{2n+2} + 102) - 102 \right) \]

\[\frac{1}{3} \left(99x_{4n+5} - 560x_{4n+6} + 4(99y_{2n+3} - 560x_{2n+3} + 6) - 6 \right) \]

\[\frac{1}{51} \left(99y_{4n+6} - 19024x_{4n+5} + 4(99y_{2n+4} - 19024x_{2n+3} + 102) - 102 \right) \]

\[\frac{1}{1731} \left(19x_{4n+4} - 16x_{4n+6} + 4(3363y_{2n+2} - 16x_{2n+4} + 3462) - 3462 \right) \]

\[\frac{1}{51} \left(3363y_{4n+5} - 560x_{4n+6} + 4(3363y_{2n+3} - 560x_{2n+4} + 102) - 102 \right) \]

\[\frac{1}{3} \left(3363y_{4n+6} - 19024x_{4n+6} + 4(3363y_{2n+4} - 19024y_{2n+4} + 6) - 6 \right) \]

\[\frac{1}{18} \left(35y_{4n+4} - y_{4n+5} + 4(35y_{2n+2} - y_{2n+3} + 36) - 36 \right) \]

\[\frac{1}{612} \left(1189y_{4n+4} - y_{4n+6} + 4(1189y_{2n+2} - y_{2n+4} + 1224) - 1224 \right) \]
Each of the following expressions represents a Nasty Number

\[
\frac{1}{18} \left(1189y_{4n+5} - 35y_{4n+6} \right) + 4 \left(1189y_{2n+3} - 35y_{2n+4} + 36 \right) - 36
\]

\[
\frac{1}{18} (36x_{2n+3} - 1188x_{2n+2} + 216)
\]

\[
\frac{1}{51} (3x_{2n+4} - 3363x_{2n+2} + 612)
\]

\[
\frac{1}{17} (6y_{2n+3} - 1120x_{2n+2} + 204)
\]

\[
\frac{2}{577} (3y_{2n+4} - 19024x_{2n+2} + 3462)
\]

\[
\frac{2}{3} (99x_{2n+4} - 3363x_{2n+3} + 18)
\]

\[
\frac{2}{17} (99y_{2n+3} - 16x_{2n+3} + 102)
\]

\[
2(99y_{2n+3} - 560x_{2n+3} + 6)
\]

\[
\frac{2}{17} (99y_{2n+4} - 19024x_{2n+3} + 102)
\]

\[
\frac{2}{577} (3363y_{2n+2} - 16x_{2n+4} + 3462)
\]

\[
\frac{2}{17} (3363y_{2n+3} - 560x_{2n+4} + 102)
\]

\[
2(3363y_{2n+4} - 19024x_{2n+4} + 6)
\]

\[
\frac{1}{3} (35y_{2n+2} - y_{2n+3} + 36)
\]

\[
\frac{1}{102} (1189y_{2n+2} - y_{2n+4} + 1224)
\]

\[
\frac{1}{3} (1189y_{2n+3} - 35y_{2n+4} + 36)
\]

Remarkable observations
(i) Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbolas which are presented in Table 2 below:

<table>
<thead>
<tr>
<th>S. No</th>
<th>Hyperbolas</th>
<th>((X_n, Y_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(32Y_n^2 - X_n^2 = 1492992)</td>
<td>((6720x_{n+1} - 192x_{n+2}, 36x_{n+2} - 1188x_{n+1}))</td>
</tr>
<tr>
<td>2</td>
<td>(32Y_n^2 - X_n^2 = 11985408)</td>
<td>((19024x_{n+1} - 16x_{n+2}, 3x_{n+3} - 3363x_{n+1}))</td>
</tr>
<tr>
<td>3</td>
<td>(32Y_n^2 - X_n^2 = 1331712)</td>
<td>((6336x_{n+1} - 32y_{n+2}, 6y_{n+2} - 1120x_{n+1}))</td>
</tr>
<tr>
<td>4</td>
<td>(32Y_n^2 - X_n^2 = 383534208)</td>
<td>((107616x_{n+1} - 16y_{n+3}, 3y_{n+3} - 19024x_{n+1}))</td>
</tr>
<tr>
<td>5</td>
<td>(32Y_n^2 - X_n^2 = 10368)</td>
<td>((19024x_{n+2} - 560x_{n+3}, 99x_{n+3} - 3363x_{n+2}))</td>
</tr>
<tr>
<td>6</td>
<td>(32Y_n^2 - X_n^2 = 332928)</td>
<td>((96x_{n+2} - 560y_{n+1}, 99y_{n+1} - 16x_{n+2}))</td>
</tr>
<tr>
<td>7</td>
<td>(32Y_n^2 - X_n^2 = 1152)</td>
<td>((3168x_{n+2} - 560y_{n+2}, 99y_{n+2} - 560x_{n+2}))</td>
</tr>
<tr>
<td>8</td>
<td>(32Y_n^2 - X_n^2 = 332928)</td>
<td>((107616x_{n+2} - 560y_{n+3}, 99y_{n+3} - 19024x_{n+2}))</td>
</tr>
<tr>
<td>9</td>
<td>(32Y_n^2 - X_n^2 = 383534208)</td>
<td>((96x_{n+3} - 19024y_{n+1}, 3363y_{n+1} - 16x_{n+3}))</td>
</tr>
</tbody>
</table>
(ii) Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in Table: 3 below:

Table 3: Parabolas

<table>
<thead>
<tr>
<th>S. No</th>
<th>Parabolas</th>
<th>((X'_n, Y'_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3456,1492992</td>
<td>((6720x_{n+1} - 192x_{n+2}), (36x_{2n+3} - 1188x_{2n+2} + 216))</td>
</tr>
<tr>
<td>2</td>
<td>9792,11985408</td>
<td>((19024x_{n+1} - 16x_{n+3}), (3x_{2n+4} - 3363x_{2n+2} + 612))</td>
</tr>
<tr>
<td>3</td>
<td>3264,1331712</td>
<td>((6336x_{n+1} - 32y_{n+2}), (6y_{2n+3} - 1120x_{2n+2} + 204))</td>
</tr>
<tr>
<td>4</td>
<td>55392,383534208</td>
<td>((107616x_{n+1} - 16y_{n+3}), (3y_{2n+4} - 19024x_{2n+2} + 3462))</td>
</tr>
<tr>
<td>5</td>
<td>288,10368</td>
<td>((99x_{2n+4} - 3363x_{2n+3} + 18))</td>
</tr>
<tr>
<td>6</td>
<td>1632,332928</td>
<td>((96x_{n+2} - 560y_{n+1}), (99y_{2n+2} - 16x_{2n+3} + 102))</td>
</tr>
<tr>
<td>7</td>
<td>96,1152</td>
<td>((3168x_{n+2} - 560y_{n+2}), (99y_{2n+3} - 560y_{2n+3} + 6))</td>
</tr>
<tr>
<td>8</td>
<td>1632,332928</td>
<td>((107616x_{n+2} - 560y_{n+3}), (99y_{2n+4} - 19024x_{2n+3} + 102))</td>
</tr>
<tr>
<td>9</td>
<td>55392,383534208</td>
<td>((96x_{n+3} - 19024y_{n+1}), (3363y_{2n+2} - 16x_{2n+4} + 3462))</td>
</tr>
<tr>
<td>10</td>
<td>1632,332928</td>
<td>((3168x_{n+3} - 19024y_{n+2}), (3363y_{2n+3} - 560x_{2n+4} + 102))</td>
</tr>
<tr>
<td>11</td>
<td>96,1152</td>
<td>((107616x_{n+3} - 19024y_{n+3}), (3363y_{2n+4} - 19024x_{2n+4} + 6))</td>
</tr>
<tr>
<td>12</td>
<td>576,41472</td>
<td>((6y_{n+2} - 198y_{n+1}), (35y_{2n+2} - y_{2n+3} + 36))</td>
</tr>
<tr>
<td>13</td>
<td>19584,47941632</td>
<td>((6y_{n+3} - 6726y_{n+1}), (1189y_{2n+2} - y_{2n+4} + 1224))</td>
</tr>
<tr>
<td>14</td>
<td>576,41472</td>
<td>((198y_{n+3} - 6726y_{n+2}), (1189y_{2n+3} - 35y_{2n+4} + 36))</td>
</tr>
</tbody>
</table>

Conclusion

In this paper, we have presented infinitely many integer solutions for the hyperbola represented by the positive Pell equation \(y^2 = 32x^2 + 36\). As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of Pell equations and determine their integer solutions along with suitable properties.

References

10. Gopalan MA, Yamuna RS. Remarkable Observations on the binary quadratic equation \(y^2 = (k^2 + 1)x^2 + 1, k \in z - \{0\}\), Impact Journal of science and Technology. 2010; 4(4):61-65.

11. MA Gopalan and R. Vijayalakshmi, Special Pythagorean triangle generated through the integral solutions of the equation \(y^2 = (k^2 - 1)x^2 + 1\), Antarctica Journal of Mathematics, 7(5), 2010, 503-507.

