

International Journal of Applied Research

ISSN Print: 2394-7500
ISSN Online: 2394-5869
Impact Factor: 3.4
IJAR 2015; 1(4): 111-114
www.allresearchjournal.com
Received: 13-12-2014
Accepted: 15-01-2015
S. Vidhyalakshmi

Professor, Department of mathematics, sige, trichy620002, India

T. Geetha

Lecturer, Department of mathematics, sige, trichy- 620 002, India

R. Sridevi

PG Scholar, Department of mathematics, sige, trichy620002, India

Correspondence:

R. Sridevi

PG Scholar, Department of mathematics, sige, trichy620002, India

On ternary quadratic diophantine equation $2 x^{2}-7 y^{2}=25 z^{2}$

S. Vidhyalakshmi, T. Geetha, R. Sridevi

Abstract

The ternary quadratic Diophantine equation representing cone given by $2 x^{2}-7 y^{2}=25 z^{2}$ analyzed for its non-zero distinct integer points. A few interesting relations between the solutions and special figurate numbers are obtained.

Notations

Polygonal number of rank ' n ' with size m :

$$
t_{m, n}=n\left[1+\frac{(n-1)(n-2)}{2}\right]
$$

Pronic number of rank ' n ':
$p r_{n}=n(n+1)$
Octahedral number of rank n :
$O H_{n}=\frac{1}{3} n\left(2 n^{2}+1\right)$

Keywords: Ternary quadratic Diophantine, integer solutions, polygonal number 2010 mathematics subject classification: 11D09

1. Introduction

The quadratic Diophantine equations with three unknowns offer an unlimited field for research because of their variety ${ }^{[1-3]}$. For an extensive review of various problems on ternary quadratic Diophantine equations representing specific 3 dimensional surfaces, one may refer [4-14].
In this communication, we present general formulas for obtaining sequences of non-zero integer solutions to the ternary quadratic Diophantine equation $2 x^{2}-7 y^{2}=25 z^{2}$. Also, a few interesting relations among the solutions are presented.

2. Method of Analysis

The ternary quadratic equation to be solved is $2 x^{2}-7 y^{2}=25 z^{2}$
To start with, it is seen that (1) is satisfied by the following triples of integers (x,y,z):(774,369,99),(-360,45,99),(198,63,45),(180,45,45),(230,85,47),(176,-31,47), (428, 193, 65), (-230,-5, 65).
However, we have other patterns of solutions which are illustrated as follows:

Method 1

Introducing the linear transformations

$$
\begin{equation*}
x=X+7 T, y=X+2 T \tag{2}
\end{equation*}
$$

in (1), it is written as

$$
\begin{equation*}
14 T^{2}=5 z^{2}+X^{2} \tag{3}
\end{equation*}
$$

Assume

$$
\begin{equation*}
T=a^{2}+5 b^{2} \tag{4}
\end{equation*}
$$

write 14 as

$$
\begin{equation*}
14=(3+i \sqrt{5})(3-i \sqrt{5}) \tag{5}
\end{equation*}
$$

Substituting (4), (5) in (3) and write it in the factorizable form as

$$
\begin{aligned}
& (3+i \sqrt{5})(3-i \sqrt{5})(a+i \sqrt{5} b)^{2}(a-i \sqrt{5} b)^{2} \\
& =(X+i \sqrt{5} z)(X-i \sqrt{5} z)
\end{aligned}
$$

Equating real and imaginary parts, the values of z and X are

$$
\begin{align*}
& X=3 a^{2}-15 b^{2}-10 a b \\
& z=a^{2}-5 b^{2}+6 a b \tag{6}
\end{align*}
$$

Then the corresponding integer solution of (1) are given by

$$
\begin{aligned}
& x(a, b)=10 a^{2}+20 b^{2}-10 a b \\
& y(a, b)=5 a^{2}-5 b^{2}-10 a b \\
& z(a, b)=a^{2}-5 b^{2}+6 a b
\end{aligned}
$$

Properties

1) $15[x(a, a)-2 y(a, a)]$ is a nasty number
2) $x(a, a)-2 y(a, a)-40 t_{4, a}=0$
3) $3\{z(a, a)-y(a, a)\}$ is a perfect square
4) $4\left\{z\left(a, a^{2}\right)-y\left(a, a^{2}\right)\right\}+$ perfect square is a cubical integer
Also, instead of (2) one may consider the linear transformation as

$$
\begin{equation*}
x=X-7 T, y=X-2 T \tag{7}
\end{equation*}
$$

For this choice, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x(a, b)=-4 a^{2}-50 b^{2}-10 a b \\
& y(a, b)=a^{2}-25 b^{2}-10 a b \\
& z(a, b)=a^{2}-5 b^{2}+6 a b
\end{aligned}
$$

Method 2

Write 14 as

$$
\begin{equation*}
14=\frac{(11+i \sqrt{5})(11-i \sqrt{5})}{9} \tag{8}
\end{equation*}
$$

Use (8),(4) in (3) and write it in the factorization form as, $\frac{(11+i \sqrt{5})(11-i \sqrt{5})}{9}(a+i \sqrt{5} b)^{2}(a-i \sqrt{5} b)^{2}$ $=(X+i \sqrt{5} z)(X-i \sqrt{5} z)$
Equating real and imaginary parts, the values of X, z are

$$
\begin{align*}
& X=\frac{1}{3}\left[11 a^{2}-55 b^{2}-10 a b\right] \\
& z=\frac{1}{3}\left[a^{2}-5 b^{2}+22 a b\right] \tag{9}
\end{align*}
$$

For X and z to be integers, the values of a and b should be multiples of 3 . Therefore, replacing a by 3A, b by 3B in (4), (9), we have

$$
\begin{aligned}
& X=33 A^{2}-165 B^{2}-30 A B \\
& z=3 A^{2}-15 B^{2}+66 A B \\
& T=9 A^{2}+45 B^{2}
\end{aligned}
$$

In view of (2), it is seen that

$$
\begin{aligned}
& x(A, B)=96 A^{2}+150 B^{2}-30 A B \\
& y(A, B)=51 A^{2}-75 B^{2}-30 A B \\
& z(A, B)=3 A^{2}-15 B^{2}+66 A B
\end{aligned}
$$

Properties

1) $5[x(a, a)-y(a, a)]$ is a nasty number
2) $x(a, a)+2 y(a, a)-108 t_{4, a}=0$
3) $5 z(a, a)-y(a, a)$ is a perfect square
4) $x(a, a+1)+10 z(a, a+1)-126 t_{4, a}-630 p r_{a}=0$

Also, using (7), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x(A, B)=-30 A^{2}-480 B^{2}-30 A B \\
& y(A, B)=15 A^{2}-225 B^{2}-30 A B \\
& z(A, B)=3 A^{2}-15 B^{2}+66 A B
\end{aligned}
$$

Method 3

Write 14 as

$$
\begin{equation*}
14=\frac{(9+i 11 \sqrt{5})(9-i 11 \sqrt{5})}{49} \tag{10}
\end{equation*}
$$

Use (10), (4) in (3) and write it in the factorization form as

$$
\begin{aligned}
& \frac{(9+i 11 \sqrt{5})(9-i 11 \sqrt{5})}{49}(a+i \sqrt{5} b)^{2}(a-i \sqrt{5} b)^{2} \\
& =(X+i \sqrt{5} z)(X-i \sqrt{5} z)
\end{aligned}
$$

Equating real and imaginary parts, the values of X and z are

$$
\begin{align*}
& X=\frac{1}{7}\left[9 a^{2}-45 b^{2}-110 a b\right] \\
& z=\frac{1}{7}\left[11 a^{2}-55 b^{2}+18 a b\right] \tag{11}
\end{align*}
$$

For X and z to be integers, the values of a and b should be multiples of 3 . Therefore, replacing a by 7A, b by 7B in (4), (11), we have

$$
\begin{aligned}
& X=63 A^{2}-315 B^{2}-770 A B \\
& z=77 A^{2}-385 B^{2}+126 A B \\
& T=49 A^{2}+245 B^{2}
\end{aligned}
$$

In view of (2), it is seen that

$$
x(A, B)=406 A^{2}+1400 B^{2}-770 A B
$$

$$
y(A, B)=161 A^{2}+175 B^{2}-770 A B
$$

$$
z(A, B)=77 A^{2}-385 B^{2}+126 A B
$$

Properties

1) $x(a, a)-y(a, a)-1470 t_{4, a}=0$
2) $23[x(a, a)-8 y(a, a)]$ is a perfect square
3) $x\left(a, 2 a^{2}+1\right)-8 y\left(a, 2 a^{2}+1\right)+882_{4, a}-53900 H_{a}=0$
4) $x(a, a+1)-8 y(a, a+1)+882 t_{4, a}-5390 p r_{a}=0$

Also using $\left(^{*}\right.$), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x(A, B)=280 A^{2}-2030 B^{2}-770 A B \\
& y(A, B)=-35 A^{2}-805 B^{2}-770 A B \\
& z(A, B)=77 A^{2}-385 B^{2}+126 A B
\end{aligned}
$$

Method 4

Write (3) as

$$
\begin{equation*}
X^{2}=14 T^{2}-5 z^{2} \tag{12}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
T=\alpha+5 \beta, \quad z=\alpha+14 \beta \tag{13}
\end{equation*}
$$

In (12), it becomes

$$
X^{2}=9 \alpha^{2}-70 * 9 \beta^{2}
$$

Replacing X by 3 U in the above equation, it is written as

$$
\begin{equation*}
\alpha^{2}=70 \beta^{2}+U^{2} \tag{14}
\end{equation*}
$$

Assume

$$
\begin{equation*}
\alpha=a^{2}+70 b^{2} \tag{15}
\end{equation*}
$$

Using (15) in (14) and expressing in the factorizable form, we have

$$
\begin{aligned}
& (a+i \sqrt{70} b)^{2}(a-i \sqrt{70} b)^{2} \\
& =(U+i \sqrt{70} \beta)(U-i \sqrt{70} \beta)
\end{aligned}
$$

Equating real and imaginary parts, we have
$U=a^{2}-70 b^{2}, \beta=2 a b$
Note that

$$
\begin{equation*}
X=3 U=3 a^{2}-210 b^{2} \tag{16}
\end{equation*}
$$

Using (15) and (16) in (13), we get

$$
T=a^{2}+70 b^{2}+10 a b
$$

$$
\begin{equation*}
z=a^{2}+70 b^{2}+28 a b \tag{18}
\end{equation*}
$$

Put (17) \& (18) in (2), we get the integer solutions of (1) to be

$$
\begin{align*}
& x(a, b)=10 a^{2}+280 b^{2}+70 a b \\
& y(a, b)=5 a^{2}-70 b^{2}+20 a b \\
& z(a, b)=a^{2}+70 b^{2}+28 a b \tag{19}
\end{align*}
$$

Also using (7), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x(a, b)=-4 a^{2}-700 b^{2}-490 a b \\
& y(a, b)=a^{2}-350 b^{2}-20 a b \\
& z(a, b)=a^{2}+70 b^{2}+28 a b
\end{aligned}
$$

Note: It is worth mentioning have that, instead of (15), one may also consider the transformations

$$
T=\alpha-5 \beta, z=\alpha-14 \beta
$$

Following the analysis presented above, a different choice of integer solutions to (1) is obtained.

3. Conclusion

In this paper, we have obtained infinitely many non-zero distinct integer solutions to the ternary quadratic Diophantine equation represented by

$$
2 x^{2}-7 y^{2}=25 z^{2}
$$

As quadratic equations are rich in variety, one may search for their choices of quadratic equation with variables greater than or equal to 3 and determine their properties through special numbers.

4. References

1. Dickson LE. "History of Theory of Numbers and Diophantine Analysis", Dove Publications, New York, 2005, 2.
2. Mordell LJ. "Diophantine Equations" Academic Press, New York, 1970.
3. Carmicheal RD. "The Theory of Numbers and Diophantine Analysis", Dover Publications, New York, 1959.
4. Gopalan MA, Geetha D, Lattice points on the Hyperboloid of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$ Impct J. Sci. Tech 2010; 4:23-32.
5. Gopalan MA,Vidhyalakshmi S, Kavitha A. Integral points on the Homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$,The Diophantus J. Math 2012; 1(2):127-136.
6. Gopalan. MA, Vidhyalakshmi S, Sumathi G. Lattice points on the Hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$, Diophantus J. Math 2012; 1(2):109-115.
7. Gopalan MA, Vidhyalakshmi S, Lakshmi K. Integral points on the Hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$ Diophantus J. of Math 2012; 1(2):99-107.
8. Gopalan MA, Vidhyalakshmi S, Lakshmi K. Lattice points on the elliptic paraboloid $16 y^{2}+9 z^{2}=4 x$ Bessel J. of Math 2013; 3(2):137-145.
9. Gopalan MA, Vidhyalakshmi S, UmaRani J. Integral points on the homogeneous cone $x^{2}+4 y^{2}=37 z^{2}$ Cayley J of Math 2013; 2(2):101-107.
10. Gopalan MA, Vidhyalakshmi S, Kavitha A, Observations on the Hyperboloid of twoSheets $7 x^{2}-3 y^{2}=z^{2}+z(y-x)+4$

International Journal of Latest Research in Science and technology 2013; 2(2):84-86.
11. Gopalan MA, Sivagami B. Integral points on the homogeneous cone $z^{2}=3 x^{2}+6 y^{2}$ IOSR Journal of Mathematics 2013; 8(4):24-29.
12. Gopalan MA, Geetha V. Lattice points on the Homogeneous cone $z^{2}=2 x^{2}+8 y^{2}-6 x y$ Indian journal of Science 2013; 2:93-96.
13. Gopalan MA, Vidhyalakshmi S, Umarani J. On the Ternary Quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2} \quad$ Sch.J.Eng Tech 2014; 2(2A):108-112.
14. Meena K, Vidhyalakshmi S, Gopalan MA, Priya IK, Integral points on the cone $3\left(x^{2}+y^{2}\right)-5 x y=47 z^{2}$ Bulletin of Mathematics and Statistic Research 2014; 2(1):65-70.

