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1. Introduction

The Diophantine equations offer an unlimited field for research due to their variety [l In
particular, one may refer [ for cubic equations with three unknowns. This communication
concerns with yet another interesting equation 3(x > + y?) - 4xy = 18z *representing non-

homogeneous Quadratic equation with three unknowns for determining its infinitely many
non-zero integral points. Also, a few interesting relations among the solutions are presented.

2. Method of Analysis
The ternary quadratic Diophantine equation to be solved is
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Introducing the linear transformations

X=u+v;y=u-v @)

In (1), itis written as

u?+5v?=09z2 ©)]

Which is satisfied by
u= 5p2 - qZ

v =2pq

:5p2 +q2
3

z

Where p and g are non-zero distinct numbers.

Replacing p by 3P & q by 3Q in the above equations and using
(2), the non-zero distinct integral solutions of (2) in two
parameters are given by

x =x(P, Q) =45P 2 -9Q? +18 PQ

y=y(P, Q) =45P * -9Q* -18PQ
z=12(P,Q)=15P?% +3Q"?
A few interesting properties are as follows

Properties

x(n,1)+ y(n1)+62z(n1) =180t7,

x(Pr, 1)+ 3z(Pr,1)=90 Pr’+18 Pr,
x(a,a)- y(a,a)=36a" = pgfey square
32(n%,n)-y(n?,n)=18t?, +18CP,

x(n1)+ y(n1)+6z(nl)-150 -30S, =0

It is noted that (3) may be solved through different methods
leading to different patterns of solutions to (1) which are
illustrated below.

Pattern: 1
Write 9 as
9=(2+i£X2—i\/§) ()
Assume z=a’+5b% = (a+ i\/nga—i\/gb) (5)

Where a, b are non-zero distinct integers.

Using (4) & (5) in (3) and applying the method of
factorization, define

S e B+ ) 0

Equating the real and imaginary parts, we have
u=u(a,b) =2a®-10b* —10ab
v=v(a,b) =a’ —5b* +4ab

~262~

Substituting the above values of u & v in equation (2), the
values of x and y are given by

x = x(a,b) =3a* —15* —6ab
y=y(a,b) =a® —5b* —14ab

(7
(8)

Thus (5), (7) & (8) represents a non-zero distinct integral
solutions of (1) in two parameters.

Properties
x(n,n+1)-3y(n,n+1)-36Pr, =0

3z(a,a)- x(a,a)-30t,,

~ Nasty number

. 7x(a,b)—C%y(a,b)+182(a,b):F,encectsquare
x(n?.n+1)-3y(n2,n+1)-72P5 =0
3z(n+1,n)-x(n+1,n)=6Pr, +30t7,

Pattern: 2
Write 9 as

9:(-2+i\/gx-2—i£) 9)

Using (5) & (9) in (3) and applying the method of
factorization, define

u+ivBy=(2+iv5)a+iveh) (10)

Equating the real and imaginary parts, we have
u=u(a,b) =-2a® +10b* —10ab
v=v(a,b)=a*-5b° —4ab

Substituting the above values of u & v in equation (2), the
values of x and y are given by

x = x(a,b) = —a® +5b* —14ab
y =y(a,b) =-3a’ +15b” —6ab

(11)
(12)

Thus (5), (11) & (12) represents a non-zero distinct integral
solutions of (1) in two parameters.

Properties

3x(,Pr,)- y(@Pr,)+36Pr, =0
32(a,b)- y(a,b)- 6ab = Nasty number
6x(a,b)-14y(a,b)+36z(a,b)=72a’
y(n,2n2 +1)— 3x(n,2n2 +1)=1080H )
3z(n,n+1)-y(h,n+1)=S, +12t,, +5

Pattern: 3
Instead of (5), we write z as

z=a2+5b2=(-a+i\/§bx-a—i\/§b) (13)
Using (9) & (13) in (3) and applying the method of
factorization, define

u+ix/§v:(—2+ix/§X—a+ix/§b)2 (14)
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Equating the real and imaginary parts, we have
u=u(a,b)=-2a®+10b* +10ab
v=v(a,b)=a’-5b?+4ab

Substituting the above values of u & v in equation (2), the
values of x and y are given by

x = x(a,b)=-a®+5b?+14ab (15)
y = y(a,b) = —-3a* +15b* + 6ab (16)

Thus (13), (15) & (16) represents a non-zero distinct integral
solutions of (1) in two parameters.

Properties

o x(@11)+z@1)+1=Cs,

« 3z(a,a)+Yy(a,a)-30a’ = Nastynumber
e 3x(L1)-y@Ql=Pt,+1

e Xx(L,Pr,)+z(,Pr,)=10Pr?+14 Pr,

e 3x(n,n)-y(n,n)=36t7,

Pattern: 4
Write (3) in the form of ratio as,

u+2z 5(z+v) p
zZ-v u-2z qg q=#0

Which is equivalent to the following two equations
(2q-p)z+qu+pv=0
(5q+2p)z—pu+5qv=0

On employing the method of cross multiplication, we get
u=up, q) =2p%-10q° +10 pq

v=v(p,q) =p°-5q° ~4pq

z=12(p,q) =p° +5q’° (17)

Substitute the values of u and v in (2), the values of x and y
are given by

x = x(p,q) = 3p? —15¢° + 6 pq (18)
y=y(p,q) =p® -5q9° +14pq (19)

Thus (17), (18) & (19) represents non-zero distinct integral
solutions of (1) in two parameters.

Properties

o x(n2n?-1)-3y(n,2n* -1)= 3650,

o 3z(n?,n)-x(n?,n)-30tZ, +6CP,, =0
e x(n,n+1)-3y(n,n+1)=36Pr,

e y(n,n+1)+z(n,n+1)-2t7, ~14Pr, =0

o 14x[n(n+1)1]-6y[n(n+1)1]+36z[n(n +1)1]= 72 Pr?

Note
(3) Can also be expressed in the form of ratio

u+ 2z Z+V p
= =—,0=0
5(z-v) u-2z q

Repeating the analysis as above the corresponding integer
solutions along with properties are presented below.
The solution is

x =X(p,d) =15p” ~3q° +6pq

y=y(p.0)=5p" -q* +14pq

z=2(p,q) =5p° +q’

Properties

. 3y(aa)-x(aa)=36a’= Perfect square

* y(nn)+z(n,n)-24t; =0

e x(n,n+1)+3z(n,n+1)=30t;, +6Pr,
x(n,2n2 —1)—3y(n,2n2 —1)+ 3650, =0
x(n,n)+3z(n,n)-30t, = Nasty number

Pattern: 5

Consider (3), as

u® +5v*=9z° =9z° x1 (20)

Write 1 as, 1 _ (2+iv5)2-iv5) (21)
9

Using (4), (5) & (21) in (20) and applying the method of
factorization, define

u+ivBv=(2+iv5 )a+ivBb) ﬁz*%@

Equating the real and imaginary parts and replacing a by 3A &
b by 3B, we have

u=u(A,B)=-3A% +15B* —120AB
v=V(A,B)=12A° —-60B* —6AB
Also, (5) = z = z(A, B) =9(A ? + 5B ?) (22)

Substituting the above values of u & v in (2), the values of x
and y are given by

X = X(A,B) =9A* —45B* —126 AB
y=y(A,B)=-15A" + 75B? ~114AB

(23)
(24)

Thus (23), (24) & (22) represents the non-zero distinct integral
solutions of (1) in two parameters.

Properties

5x(L1)+3y(@1)+972t,, =0

x[L,n(n +1)]+ z[1,n(n +1)] = 18t,, - 126 Pr
e z(Pr,1)-x(Pr,1)-90t,, —126 Pr, =0

o 3y(n,n)+5x(n,n)+810 +162S, =0

* x(n)+z@n)=18t,, -126t,,

n
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Note
Instead of (21), one may also consider 1 as
 _L2+ivs)2-i5)

9 (25)

Substituting (4), (6) & (25) in (20) and following the
procedure presented above, the corresponding integral
solutions of (1) are given by

X = X(a,b) = —3a® +15b* + 6ab

y = y(a,b) =-3a* +15b* —6ab

Properties

x(@,Pr, )+ y@Pr,)+9z(Pr,)=75Pr?
x(@,n)+y(@n)-30t7, +9t7, =0

. 32(a,a)-y(a,a)-9a’= Nasty number

{ L n@* +) 1+ Y@ n@* +D 197 4 n(2n* +1)]=67DH
x[(@n(n+1)]+ y[@Ln(n+1)]+9t,, —30Pr? =0

Pattern: 6
In addition to (25), consider 1 as

_(2+i3+5)2-i3+5)
49

1
(26)

Substituting (5), (9) & (26) in (20) and following the
procedure presented above, the corresponding integral
solutions of (1) are given by

x = X(A,B) =-21A% +105B* — 714 AB

y = y(A,B) = -133A% + 66582 — 406 AB
z=2(A,B) = 49(A? +5B?)

Properties

21x(L,Pr,)+9z(L,Pr, ) = 2450 Pr?-14994 Pr,
3y(n,n+1)-19x(n,n+1) =12348Pr,
192(n,n(n+1)—7y(n,n(n+1))=1862; , +5684;
3y(n,2n?* —1)-19x(n,2n* —1) =12348S0,
21x(n+1,n) +92(n +1,n) = 2450t2  —14994Pr,

Note
Instead of (26), we write 1 as

,_L2+i3VE)2-i35)
29

Following the procedure presented above, the corresponding
integral solutions of (1) are given by

X = X(A, B) = -105 A% + 525B* — 546 AB
y=Yy(A B)=-161A% +805B% —14 AB
z=12(A,B) = 49(A% +5B?)

~ 264~

Properties
X(@,Pr,)—-39y(,Pr, )= 6174t§,l —30870 Pr/?

x(1,1) - 39y(1,1) +126 2(1,1) = 98Pt,
7y(n?1)+23z(n?1) =322 Pt, — 98t;

x(n,2n* +1) —39y(n,2n? +1) = 6174t; —2778300H?

e 7y(2n*-1,n)+23z(2n* -1,n) =11270t;  +98SO,

Pattern: 7
Equation (3) can be written as

u? =9z2 —5v?

(27)
Introducing the linear transformations,
Zz=X+5T &V=X+9T (28)
In (27), we get
4X? -u®=180T" (29)
Which is satisfied by
T(a,p)=-4ap (30)
X(a,p)=-12a*-15p" (31)
u(a,B)=-24a*+308° (32)

V(a, B) = -12a.> —15 8> — 360

Substituting the values of (30) & (31) in (28) and using (2),
the corresponding integer solutions of (1) are given by

X = X(a, B) = —36a% +154% — 360
y=Y(a, f) = -12a* + 453 +36ap3
7= 2(a, f) = ~12a* —15% — 2003

Properties

o 3y[(@n*-1),n]—-x(2n* —1),n]-100=208, +1440H,
y[n(n+1),(n+2)]-3x[n(n+1),(n+2)]=96Pr’*+864P°
y(n?,n)—z(n?n) =60t;, +56CP;

x(L1) + y(L1) +1=CS,

e X(Pr., 1)+ y(Pr,1)—4z(Pr,1) = 24CS, +80Pr,

Note
In addition to (28), one may also consider the linear

transformations Z2 = X —=5T &V =X =9T Following the
method presented above, different set of solutions are
obtained.

3. Conclusion

In this paper, we have obtained infinetly many non-zero
distinct integer solutions to the ternary quadratic diophantine
equation represented by

3(x%+y?®)-4xy =18z°
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As quadratic equations are rich in variety, one may search for
their choices of quadratic equation with variables greater than
or equal to 3 and determine their properties through special
numbers.
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