

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 **Impact Factor:** 3.4 IJAR 2015; 1(4): 261-265 www.allresearchjournal.com Received: 20-02-2015 Accepted: 19-03-2015

K. Meena

Former VC, Bharathidasan University, Trichy-620024, Tamilnadu, India.

S. Vidhyalakshmi

Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu.

R. Narmatha

M.Phil Scholar, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu.

A. Vijayasankar

Asst. Professor, Department of Mathematics, NCT, Trichy-620001, Tamilnadu.

On the ternary quadratic diophantine equation

$$3(x^2 + y^2) - 4xy = 18z^2$$

K. Meena, S. Vidhyalakshmi, R. Narmatha, A. Vijayasankar

Abstract

The ternary quadratic diophantine equation represented by $3(x^2 + y^2) - 4xy = 18z^2$ is analyzed for its non-zero distinct integer solutions. A few interesting properties between the solutions and special figurate numbers are obtained.

Keywords: Ternary quadratic, integer solutions, figurate numbers.

2010 Mathematics subject classification: 11D09.

Notations Used:

$$t_{m,n} = n \left(1 + \frac{(n-1)(m-2)}{2} \right)$$

SO
$$_{n} = n(2n^{2} - 1)$$

$$Pr_{n} = n(n+1)$$

$$OH_{n} = \frac{n(2n^2 + 1)}{3}$$

$$Ct_{m,n} = \frac{mn(n+1)+2}{2}$$

$$CP_n^m = \frac{m(n-1)n(n+1)}{6} + n$$

$$S_n = 6n(n-1) + 1$$

$$Pt_n = \frac{n(n+1)(n+2)(n+3)}{24}$$

$$g_{na} = 2a - 1$$

1. Introduction

The Diophantine equations offer an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-21] for cubic equations with three unknowns. This communication concerns with yet another interesting equation $3(x^2 + y^2) - 4xy = 18z^2$ representing nonhomogeneous Quadratic equation with three unknowns for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.

2. Method of Analysis

The ternary quadratic Diophantine equation to be solved is

$$3(x^2 + y^2) - 4xy = 18z^2$$
 (1)

International Journal of Applied Research

Introducing the linear transformations

$$x = u + v; y = u - v$$
(2)

In (1), it is written as

$$u^2 + 5v^2 = 9z^2 (3)$$

Which is satisfied by

$$u = 5p^2 - q^2$$

$$v = 2pq$$

$$z = \frac{5p^2 + q^2}{3}$$

Where p and q are non-zero distinct numbers.

Replacing p by 3P & q by 3Q in the above equations and using (2), the non-zero distinct integral solutions of (2) in two parameters are given by

$$x = x(P, Q) = 45P^{2} - 9Q^{2} + 18 PQ$$

 $y = y(P, Q) = 45P^{2} - 9Q^{2} - 18 PQ$
 $z = z(P,Q) = 15P^{2} + 3Q^{2}$

A few interesting properties are as follows

Properties

- $x(n,1) + y(n,1) + 6z(n,1) = 180 t_{2n}^{2}$
- $x(Pr_{,,1}) + 3z(Pr_{,,1}) = 90 Pr_{,,1}^2 + 18 Pr_{,,1}$
- $x(a,a) y(a,a) = 36a^2 =$ Perfect square

$$3z(n^2,n)-y(n^2,n)=18t_{2n}^2+18CP_{6n}$$

•
$$x(n,1) + y(n,1) + 6z(n,1) - 150 - 30S_n = 0$$

It is noted that (3) may be solved through different methods leading to different patterns of solutions to (1) which are illustrated below.

Pattern: 1

Write 9 as

$$9 = \left(2 + i\sqrt{5}\right)\left(2 - i\sqrt{5}\right) \tag{4}$$

Assume
$$z = a^2 + 5b^2 = (a + i\sqrt{5}b)(a - i\sqrt{5}b)$$
 (5)

Where a, b are non-zero distinct integers.

Using (4) & (5) in (3) and applying the method of factorization, define

$$u + i\sqrt{5}v = (2 + i\sqrt{5})(a + i\sqrt{5}b)^2$$
 (6)

Equating the real and imaginary parts, we have

$$u = u(a,b) = 2a^2 - 10b^2 - 10ab$$

$$v = v(a,b) = a^2 - 5b^2 + 4ab$$

Substituting the above values of u & v in equation (2), the values of x and y are given by

$$x = x(a,b) = 3a^2 - 15b^2 - 6ab$$
(7)

$$y = y(a,b) = a^2 - 5b^2 - 14ab$$
(8)

Thus (5), (7) & (8) represents a non-zero distinct integral solutions of (1) in two parameters.

Properties

- $x(n, n+1) 3y(n, n+1) 36 Pr_n = 0$
- $3z(a,a) x(a,a) 30t_{4,a} =$ Nasty number
- 7x(a,b) 3y(a,b) + 18z(a,b) = Perfect square
- $x(n^2, n+1) 3y(n^2, n+1) 72P_n^5 = 0$
- $3z(n+1,n)-x(n+1,n)=6 \operatorname{Pr}_n + 30 t_{3,n}^2$

Pattern: 2

Write 9 as

$$9 = \left(-2 + i\sqrt{5}\right)\left(-2 - i\sqrt{5}\right) \tag{9}$$

Using (5) & (9) in (3) and applying the method of factorization, define

$$u + i\sqrt{5}v = (-2 + i\sqrt{5})(a + i\sqrt{5}b)^2$$
 (10)

Equating the real and imaginary parts, we have

$$u = u(a,b) = -2a^2 + 10b^2 - 10ab$$

$$v = v(a,b) = a^2 - 5b^2 - 4ab$$

Substituting the above values of u & v in equation (2), the values of x and y are given by

$$x = x(a,b) = -a^2 + 5b^2 - 14ab$$
 (11)

$$y = y(a,b) = -3a^{2} + 15b^{2} - 6ab$$
 (12)

Thus (5), (11) & (12) represents a non-zero distinct integral solutions of (1) in two parameters.

Properties

- $3x(1, Pr_n) y(1, Pr_n) + 36 Pr_n = 0$
- 3z(a,b) y(a,b) 6ab = Nasty number
- $6x(a,b)-14y(a,b)+36z(a,b)=72a^{2}$
- $y(n,2n^2+1)-3x(n,2n^2+1)=108OH$
- $3z(n,n+1)-y(n,n+1)=S_n+12t_{3,n}+5$

Pattern: 3

Instead of (5), we write z as

$$z = a^{2} + 5b^{2} = (-a + i\sqrt{5}b)(-a - i\sqrt{5}b)$$
 (13)

Using (9) & (13) in (3) and applying the method of factorization, define

$$u + i\sqrt{5}v = (-2 + i\sqrt{5})(-a + i\sqrt{5}b)^2$$
 (14)

International Journal of Applied Research

Equating the real and imaginary parts, we have

$$u = u(a,b) = -2a^{2} + 10b^{2} + 10ab$$

$$v = v(a,b) = a^{2} - 5b^{2} + 4ab$$

Substituting the above values of u & v in equation (2), the values of x and y are given by

$$x = x(a,b) = -a^2 + 5b^2 + 14ab$$
 (15)

$$y = y(a,b) = -3a^2 + 15b^2 + 6ab \tag{16}$$

Thus (13), (15) & (16) represents a non-zero distinct integral solutions of (1) in two parameters.

Properties

- $x(1,1)+z(1,1)+1=CS_4$
- $3z(a,a) + y(a,a) 30a^2 = Nastynumber$
- $3x(1,1) y(1,1) = Pt_4 + 1$
- $x(1, Pr_n) + z(1, Pr_n) = 10 Pr_n^2 + 14 Pr_n$
- $3x(n,n) y(n,n) = 36t_3^2$

Pattern: 4

Write (3) in the form of ratio as,

$$\frac{u+2z}{z-v} = \frac{5(z+v)}{u-2z} = \frac{p}{q} \quad q \neq 0$$

Which is equivalent to the following two equations

$$(2q - p)z + qu + pv = 0$$

$$(5q + 2p)z - pu + 5qv = 0$$

On employing the method of cross multiplication, we get

$$u = u(p, q) = 2p^{2} - 10q^{2} + 10pq$$

$$v = v(p, q) = p^2 - 5q^2 - 4pq$$

$$z = z(p, q) = p^2 + 5q^2$$
 (17)

Substitute the values of u and v in (2), the values of x and y are given by

$$x = x(p,q) = 3p^{2} - 15q^{2} + 6pq$$
(18)

$$y = y(p,q) = p^2 - 5q^2 + 14pq$$
 (19)

Thus (17), (18) & (19) represents non-zero distinct integral solutions of (1) in two parameters.

Properties

- $x(n,2n^2-1)-3y(n,2n^2-1)=36SO_n$
- $3z(n^2, n) x(n^2, n) 30t_{2,n}^2 + 6CP_{6,n} = 0$
- $x(n, n+1) 3y(n, n+1) = 36 \text{ Pr}_n$
- $y(n, n+1) + z(n, n+1) 2t_{2,n}^2 14 Pr_n = 0$
- $14 x[n(n+1),1] 6 y[n(n+1),1] + 36 z[n(n+1),1] = 72 Pr_n^2$

Note

(3) Can also be expressed in the form of ratio

$$\frac{u + 2z}{5(z - v)} = \frac{z + v}{u - 2z} = \frac{p}{q}, q \neq 0$$

Repeating the analysis as above the corresponding integer solutions along with properties are presented below. The solution is

The solution is

$$x = x(p,q) = 15p^2 - 3q^2 + 6pq$$

$$y = y(p,q) = 5p^2 - q^2 + 14pq$$

$$z = z(p,q) = 5p^2 + q^2$$

Properties

- $3y(a,a) x(a,a) = 36a^2 = Perfect square$
- $y(n,n) + z(n,n) 24t_{2n}^2 = 0$
- $x(n, n+1) + 3z(n, n+1) = 30t_{2,n}^2 + 6 Pr_n$
- $x(n,2n^2-1)-3y(n,2n^2-1)+36SO_n=0$
- $x(n,n) + 3z(n,n) 30t_{2n}^2 =$ Nasty number

Pattern: 5

Consider (3), as

$$u^{2} + 5v^{2} = 9z^{2} = 9z^{2} \times 1$$
 (20)

Write 1 as,
$$1 = \frac{(2 + i\sqrt{5})(2 - i\sqrt{5})}{9}$$
 (21)

Using (4), (5) & (21) in (20) and applying the method of factorization, define

$$u + i\sqrt{5}v = (2 + i\sqrt{5})(a + i\sqrt{5}b)^2 \frac{(2 + i\sqrt{5})}{3}$$

Equating the real and imaginary parts and replacing a by 3A & b by 3B, we have

$$u = u(A, B) = -3A^2 + 15B^2 - 120AB$$

$$v = v(A,B) = 12A^2 - 60B^2 - 6AB$$

Also, (5)
$$\Rightarrow$$
 z = z(A, B) = 9(A² + 5B²) (22)

Substituting the above values of u & v in (2), the values of x and y are given by

$$x = x(A,B) = 9A^{2} - 45B^{2} - 126AB$$
 (23)

$$y = y(A,B) = -15A^{2} + 75B^{2} - 114AB$$
 (24)

Thus (23), (24) & (22) represents the non-zero distinct integral solutions of (1) in two parameters.

Properties

- $5x(1,1) + 3y(1,1) + 972t_{31} = 0$
- $x[1, n(n+1)] + z[1, n(n+1)] = 18t_{3,1} 126 \text{ Pr}_n$
- $z(Pr_n,1) x(Pr_n,1) 90t_{3,1} 126 Pr_n = 0$
- $3y(n,n) + 5x(n,n) + 810 + 162S_n = 0$
- $x(1, n) + z(1, n) = 18t_{3,1} 126t_{2,n}$

Note

Instead of (21), one may also consider 1 as

$$1 = \frac{\left(-2 + i\sqrt{5}\right)\left(-2 - i\sqrt{5}\right)}{9} \tag{25}$$

Substituting (4), (5) & (25) in (20) and following the procedure presented above, the corresponding integral solutions of (1) are given by

$$x = x(a,b) = -3a^2 + 15b^2 + 6ab$$

 $y = y(a,b) = -3a^2 + 15b^2 - 6ab$

Properties

- $x(1, Pr_n) + y(1, Pr_n) + 9z(1, Pr_n) = 75 Pr_n^2$
- $x(1,n) + y(1,n) 30t_{2,n}^2 + 9t_{3,n}^2 = 0$
- $3z(a, a) y(a, a) 9a^2 = \text{Nasty number}$
- $x[(1,n(2n^2+1))+y[(1,n(2n^2+1))+9z[(1,n(2n^2+1))=6750H_n^2]$
- $x[(1, n(n+1)] + y[(1, n(n+1)] + 9t_{1,2} 30 Pr_n^2 = 0$

Pattern: 6

In addition to (25), consider 1 as

$$1 = \frac{\left(2 + i3\sqrt{5}\right)\left(2 - i3\sqrt{5}\right)}{49} \tag{26}$$

Substituting (5), (9) & (26) in (20) and following the procedure presented above, the corresponding integral solutions of (1) are given by

$$x = x(A,B) = -21A^{2} + 105B^{2} - 714AB$$

$$y = y(A,B) = -133A^{2} + 665B^{2} - 406AB$$

$$z = z(A,B) = 49(A^{2} + 5B^{2})$$

Properties

- $21x(1, Pr_n) + 9z(1, Pr_n) = 2450 Pr_n^2 14994 Pr_n$
- $3y(n, n+1) 19x(n, n+1) = 12348 Pr_n$
- $19z(n,n(n+1))-7y(n,n(n+1))=1862_{2,n}^2+5684P_n^5$
- $3y(n,2n^2-1)-19x(n,2n^2-1)=12348SO_n$
- $21x(n+1,n) + 9z(n+1,n) = 2450t_{2,n}^2 14994 Pr_n$

Note

Instead of (26), we write 1 as
$$1 = \frac{\left(-2 + i3\sqrt{5}\right)\left(-2 - i3\sqrt{5}\right)}{49}$$

Following the procedure presented above, the corresponding integral solutions of (1) are given by

$$x = x(A, B) = -105 A^{2} + 525 B^{2} - 546 AB$$

$$y = y(A, B) = -161A^{2} + 805 B^{2} - 14 AB$$

$$z = z(A, B) = 49(A^{2} + 5B^{2})$$

Properties

- $x(1, Pr_n) 39 y(1, Pr_n) = 6174 t_{3,1}^2 30870 Pr_n^2$
- $x(1,1) 39 y(1,1) + 126 z(1,1) = 98 Pt_6$
- $7y(n^2,1) + 23z(n^2,1) = 322 Pt_4 98t_2^2$
- $x(n,2n^2+1) 39y(n,2n^2+1) = 6174t_{2,n}^2 2778300H_n^2$
- $7y(2n^2-1,n) + 23z(2n^2-1,n) = 11270t_{2,n}^2 + 98SO_n$

Pattern: 7

Equation (3) can be written as

$$u^2 = 9z^2 - 5v^2 \tag{27}$$

Introducing the linear transformations,

In (27), we get

$$4X^{2} - u^{2} = 180 T^{2}$$
 (29)

Which is satisfied by

$$T(\alpha, \beta) = -4\alpha\beta \tag{30}$$

$$X(\alpha, \beta) = -12\alpha^{2} - 15\beta^{2}$$
(31)

$$u(\alpha, \beta) = -24 \alpha^2 + 30 \beta^2$$
 (32)

$$v(\alpha, \beta) = -12\alpha^2 - 15\beta^2 - 36\alpha\beta$$

Substituting the values of (30) & (31) in (28) and using (2), the corresponding integer solutions of (1) are given by

$$x = x(\alpha, \beta) = -36\alpha^2 + 15\beta^2 - 36\alpha\beta$$
$$y = y(\alpha, \beta) = -12\alpha^2 + 45\beta^2 + 36\alpha\beta$$

$$z = z(\alpha, \beta) = -12\alpha^2 - 15\beta^2 - 20\alpha\beta$$

Properties

- $3y[(2n^2-1),n]-x[(2n^2-1),n]-100=20S_n+144OH_n$
- $y[n(n+1),(n+2)]-3x[n(n+1),(n+2)]=96Pr_n^2+864P_n^3$
- $y(n^2, n) z(n^2, n) = 60t_{2,n}^2 + 56CP_{6,n}$
- $x(1,1) + y(1,1) + 1 = CS_3$
- $x(Pr_n,1) + y(Pr_n,1) 4z(Pr_n,1) = 24CS_2 + 80 Pr_n$

Note

In addition to (28), one may also consider the linear transformations z = X - 5T & v = X - 9T. Following the method presented above, different set of solutions are obtained.

3. Conclusion

In this paper, we have obtained infinetly many non-zero distinct integer solutions to the ternary quadratic diophantine equation represented by

$$3(x^2 + y^2) - 4xy = 18z^2$$

As quadratic equations are rich in variety, one may search for their choices of quadratic equation with variables greater than or equal to 3 and determine their properties through special numbers.

Acknowledgement

The financial support from the UGC, New Delhi (F-MRP-5122/14(SERO/UGC) dated march 2014) for a part of this work is gratefully acknowledged.

4. References

- 1. Dickson IE. History of Theory of Numbers, Diophantine analysis, New York, Dover, 2005, 2.
- Mordell LJ. Diophantine Equations Academic Press, New York, 1969.
- 3. Carmichael RD. The Theory of numbers and Diophantine Analysis, New York, Dover, 1959.
- 4. Gopalan MA, Manjusomanath, Vanithe N. On Ternary cubic equation $x^2 y^2 = z^3$, Acta Ciencia Indica 2007; XXXIIIM (3):705-707.
- 5. Gopalan MA, Sangeetha G. On The Ternary Cubic Diophantine Equation $y^2 = Dx^2 + z^3$ Archimedes J. Math 2011; 1(1):7-14.
- 6. Gopalan MA, Vijayasankar A, Vidhyalakshmi S. Integral Solutions of Ternary Cubic equation $x^2 + y^2 xy + 2(x + y + 2) = (k^2 + 3)z^2$, Archimedes J.Math 2011; 1(1):59-65.
- 7. Gopalan MA, Srividhya G. integral solutions of the ternary cubic Diophantine equation $x^2 + y^2 = z^2$ Acta Ciencia Indica 2011; XXXVIIM (4):805-808.
- 8. Gopalan MA, Pandiselvi V. Observations on the ternary cubic equation $x^3 + y^3 + x^2 y^2 = 4(z^3 + z^2)$ Archimedes

J.Math 2011; 1(1):31-37.

- 9. Gopalan MA, Vijayalaksmi R. Integral solutions of ternary cubic equation $x^{3} + y^{3} + \frac{16}{16}(x + y) = \frac{16}{16}z^{3} \text{ Antarctica J. Math}$ 2012; 9(7):607- 612.
- 10. Gopalan MA, Sivakami B. On the ternary cubic equation $2^{xz} = y^2(x + z)$, Bessels J.Math 2012; 2(3):171-177.
- 11. Gopalan MA. Sivakami B. Integral Solutions of Ternary Cubic Equation

 4 x 2 4 xy + 6 y 2 = [(k + 1) 2 + 5] w 3 Impact J. Sci.
- Tech 2012; 6(1):15-22.

 12. Gopalan MA, Vidhyalakshmi S, Mallika S. On the ternary non-homogeneous cubic equation
 - $x^3 + y^3 3(x + y) = 2(3k^2 2)z^3$ Impact J.Sci. Tech 2013; 7(1):41-45.
- 13. Gopalan MA, Vidhyalakshmi S, Lakshmi K. Lattice points on the non-homogeneous cubic equation $x^3 + y^3 + z^3 (x + y + z) = 0$, Impact J.Sci.Tech 2013; 7(1):51-55.
- 14. Gopalan MA, Vidhyalakshmi S, Lakshmi K. Lattice points on the non-homogeneous cubic equation $x^3 + y^3 + z^3 + x + y + z = 0$ Impact J.Sci.Tech 2013; 7(1):21-25.

- 15. Gopalan MA, Vidhyalakshmi S, Kavitha A. Observation on the Ternary Cubic Equation $x^2 + y^2 + xy = 12 z^3$ Antarctica J. Math 2013; 10(5):453-460.
- 16. Gopalan MA, Geetha K. On the ternary cubic diophantine equation $x^2 + y^2 xy = z^3$ Bessels J.Math 2013; 3(2):119-123.
- 17. Vidhyalakshmi S, Gopalan MA, Kavitha A. Observations on the ternary cubic equation $x^2 xy + y^2 = 7z^3$ International Journal of Computational Engineering Research 2013; (3):17-22.
- 18. Gopalan MA, Vidhyalakshmi S. Sumathi G. On The Ternary Cubic Diophantine Equation $x^3 + y^3 + z(x^2 + y^2 20) = 4(x + y)^2 z$ Impact J.Sci .Tech 2013; 7(2):01-06.
- 19. Vidhyalakshmi S, Usharani TR, Gopalan MA. Integral Solutions of Non-Homogeneous Cubic Equation $ax^2 + by^2 = (a + b)z^3$ Diophantine J.Math 2013; 22(1):31-38
- 20. Meena K. Gopalan MA, Vidhyalakshmi S, Aarthy Thangam S. On the ternary non-homogeneous cubic equation $4(x^2 + y^2) 7xy + (x + y) + 15(x y) = 16(z^3 1)$ Bessel J.Math 2014; 4(3):75-80.
- 21. Vidhyalakshmi S, Gopalan MA, Kavitha A. On the ternary cubic equation 5 (X ² + Y ²) 9 XY + X + Y + 1 = 23 Z ³, IJIRR 2014; 1(10):99-101.