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Abstract 
In this paper, we present some results for the asymptotic stability of solutions for nonlinear fractional 
difference equations involving Riemann-Liouville-like difference operator. The results are obtained by 
using Krasnoselskii’s fixed point theorem and discrete Arzela-Ascoli’s theorem. Three examples are 
also provided to illustrate our main results. 
 
Keywords: Nonlinear fractional difference, asymptotic stability solution, Riemann-Liouville-like 
difference operator. 
 
Introduction 
We consider the asymptotic stability of solutions for nonlinear fractional difference 
equations: 

 
 
where  is a Riemann-Liouville-like discrete fractional difference,  x 

is continuous with respect to t and x,  
Fractional differential equations have received increasing attention during recent years since 
these equations have been proved to be valuable tools in the modeling of many phenomena 
in various fields of science and engineering [1]. Most of the present works were focused on 
fractional differential equations, and the references there in. However, very little progress has 
been made to develop the theory of the analogous fractional finite difference equation [3]. 
Due to the lack of geometry interpretation of the fractional derivatives, it is difficult to find a 
valid tool to analyze the stability of fractional difference equations [5]. In the case that it is 
difficult to employ Liapunov’s direct method, fixed point theorems are usually considered in 
stability. Motivated by this idea, in this paper, we discuss asymptotic stability of nonlinear 
fractional difference equations by using Krasnoselskii’s fixed point theorem and discrete 
Arzela-Ascoli’s theorem. Examples are provided to illustrate the main results.  
We introduce preliminary facts of discrete fractional calculus. 
 
Preliminaries 
Definition 2.1 Let ν > 0. The ν-th fractional sum x is defined by 

                                                            (2.1) 
Where  is defined for  mod (1) and  is defined for  mod (1), and 

 The fractional sum  maps functions defined on  to functions 

defined on  
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Definition 2.2 Let  and  where 

 denotes a positive integer,  ceiling of number. 

Set . The -th fractional difference is defined 
as 

                  (2.2) 

Let  be real –value function defined on  and  
then the following equalities hold 

 

 
 
Stochastic Non-Linear System 
We say that  is stable in probability if for any 

 and any  there exist  such 

that for all  and  the following 
conditions holds: 

 
In the following we consider the Stochastic Non-linear 
System (SNS) 

 
Where  the dynamics  

and  are continuous and Lipschitz 

functions with,  and . 
This functions extension of 3.2.1 provided in that guarantees 
the existence of a  control law  in such a 

way that  satisfy the stability in 
	

 
 
Denote by D the infinitesimal generator of the stochastic 
process solution of the uncontrolled part of SNS equation 
3.2, that is, D is the second order differential operator 
defined for any function  by 
 

	

For any  denote by  the first order 
differential operator defined for any function 

 by 
 

	
 

Define X as the infinitesimal generator for the stochastic 
process solution of the closed-loop system 3.3, that is, X is 
the differential operator defined for any function for any 
function  in  by  
 

 
	

In the following we extend the concept of stochastic 
Lyapunov condition introduced in definition provided used 
for stability in probability of SNS equation 3.2 at the 
neighborhood of the origin. 

Application 
In this section we illustrate our results by a designing a 
numerical example. 
 
First Example 
Consider the Stochastic Non-Linear System 

 
Where a standard real-valued Wiener process, u is a 
real-valued measurable control law,  

 

 

 
Define the Lyapunov function in the form 
 

 
A simple calculation shows that 
 

 
Therefore, 

 

 

 

 
 

The later inequality implies that are fulfilled with 

 

 and by theorem there 

exist a  feedback law  with  

such that is stable in probability with respect to the 
resulting closed-loop system deduced from 4.1. 
 
Homogeneous Difference Equations 
When the number of lags grows large (3 or greater), solving 
linear difference equations by substitution is tedious. The key 
to understanding linear difference equations is the study of 
the homogeneous portion of the equation [8]. In the general 
linear difference equation,  
 

 
The homogenous portion is defined as the terms involving 
only y, 

The intuition behind studying this portion of the system is 
that, given the sequence of {xt}, all of the dynamics and the 



 

~ 464 ~ 

International Journal of Applied Research 
 

stability of the system are determined by the determined by 
the relationship between contemporaneous and it’s lagged 
values which allows the determination of the parameter 
values where the system is stable [15]. Again, consider the 
homogeneous portions of the simple 1st order system  

 
Which has homogenous portion 

 
It is easy to show that  

 
Is also a solution by examining the solution to the linear 
difference equation. The solution of the form  for an 
arbitrary constant c. 

 

 
and  

 
Putting these two together shows that  

 

 

 

 
 
Linear Homogeneous Difference Equations 
An equation of the form 

 
in which  and  are constants, is a linear second-order 
difference equation, with constant coefficients. This is 
precisely the type of equation we found for  in the 
previous section. When k=0, we have the homogeneous 
equation 
  

 
 

It follows that if we know two solutions and  of the 
difference equation, then  
 

is also a solution for any constants A and B.  
Suppose we are given a homogeneous difference 
equation . In order to 

determine the sequence of values completely we must 

know the initial values  and . Given these values,  is 

determined by the equation with t=2,  is then determined 
by the equation with t=3 and so on. So if we are looking for a 

solution  we have to choose A and B 
so that the formula fits the initial conditions when t=0 and 
t=1. These two conditions determine appropriate values for 
the two arbitrary constants [12]. This means that the general 
solution of the homogeneous difference equation is given by 
the formula displayed above. 
We shall now describe a practical method for finding two 

solutions  and , based on the auxiliary equation 

 
This is a quadratic equation. We observed that such an 
equation may have two distinct solutions, or just one 

solution, or no solutions, depending on the value of the 

quantity   
 
The auxiliary equation has just one solution with another 
example 
It is clear that we cannot get a solution involving two 
arbitrary constants by the method used above. If the (one) 
solution of the auxiliary equation is , then  is a 
solution of the difference equation as before, but we need to 
find another. 
The auxiliary equation has exactly one solution when 

 that is, when . Then the equation 

 can be written in the form  

 
and the (one) solution is . We claim that a second 

solution of the difference equation is . Substituting 
this, 

 

 
Because  satisfies the auxiliary equation, we have 

 Furthermore, since  and 

, it follows that 

. Hence  is a 

solution, as claimed. 
The general solution is therefore 

 
The values of the constants C and D can be determined by 
using the initial values and  
Third Example: Consider the difference equation 

 
The auxiliary equation is  

 
There is therefore just one solution,  of the auxiliary 
equation. The general solution to the difference equation is 
(Ct+D)  Using the facts that  and , 
we must have 
D=1, 3(C+D)=1 
So that C=-2/3 and D=1, giving 

 
 
Conclusion 
In This paper we derived Stability in probability of stochastic 
nonlinear system there are many types of stochastic system 
although they do not trivial solution. We have established the 
stability probability of non-trivial solutions for stochastic 
nonlinear system. We have derived a stochastic version of 
control Lyapunov function and provided the necessary and 
sufficient condition in probability of a non-trivial solution for 
stochastic non-linear system exits. The numerical examples 
are solved to illustrate our results 
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