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Abstract 
A soft semigroup is an algebraic structure that extends the concept of a traditional semigroup by 

incorporating soft sets, which are a generalization of classical sets that allow for the representation of 

uncertainty and vagueness. In a soft semigroup, the binary operation is defined over soft elements 

rather than traditional elements. The application of soft semigroups is diverse and spans various fields, 

including decision-making, expert systems, and data analysis, where uncertainties and imprecisions are 

present. Soft semigroups provide a powerful framework for modeling situations where the exact 

membership of elements in a set is not well-defined. The properties of soft semigroups encompass 

those of conventional semigroups, such as closure under the operation, associativity, and the existence 

of an identity element. However, they also introduce additional features due to the soft nature of 

elements, such as the manipulation of membership degrees and the propagation of uncertainty through 

operations. The structure of a soft semigroup consists of a non-empty set of soft elements equipped 

with a binary operation that respects the soft set operations, like union and intersection. Soft 

semigroups can be represented through matrices, mappings, or algebraic equations, showcasing their 

flexibility in modeling diverse scenarios with uncertain information. In soft semigroups provide a 

theoretical foundation and practical tools for handling uncertain and vague information within a 

semigroup framework. Their applications range from decision systems to data analysis, and their 

properties and structural components enable the manipulation and propagation of uncertainty in various 

contexts. 
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Introduction 
A soft semigroup is a mathematical structure that extends the concept of a traditional 

semigroup by incorporating the notion of "softness," which allows for degrees of 

membership or participation of elements in the operation. Soft semigroups find applications 

in various fields, including decision-making, uncertainty modeling, and fuzzy mathematics. 

Here's the definition and some properties of a soft semigroup: 

 

Definition 

A soft semigroup is defined as a set \(S\) equipped with a binary operation \(\ast: S \times S 

\to S\) and a membership function \(\mu: S \to [0, 1]\). The membership function assigns 

degrees of belonging to elements in \(S\), indicating the extent to which each element 

participates in the semigroup operation. 

 

In other words, a soft semigroup consists of two components 

1. A binary operation \(\ast\) that combines elements from \(S\) in the usual way. 

2. A membership function \(\mu\) that quantifies the degree of each element's involvement 

in the operation. 

 

Properties 

1. Soft Associativity: A soft semigroup satisfies soft associativity, which means that the 

operation is compatible with the membership degrees. Mathematically, for all \(a, b, c\) in 

\(S\), the following condition holds: 

\[\mu(a) \ast (\mu(b) \ast \mu(c)) \geq \mu((a \ast b) \ast c).\] 
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This condition ensures that the degree of participation in the 

left-hand side is greater than or equal to the degree of 

participation in the right-hand side. 

 

2. Monotonicity: The membership function \(\mu\) is 

monotonic, meaning that if \(a\) is more strongly related to 

the operation than \(b\) (i.e., \(\mu(a) \geq \mu(b)\)), then 

\(a\) should have a greater degree of involvement in the 

operation than \(b\). 

 

3. Closure Property: Just like traditional semigroups, a soft 

semigroup maintains closure under the operation. This means 

that applying the operation to any pair of elements in \(S\) 

results in an element that is still in \(S\). 

 

4. Identity Element (Optional): A soft semigroup may or 

may not have an identity element. If an identity element 

exists, it is an element that, when combined with any other 

element using the operation, leaves the other element 

unchanged. 

 

5. Invertibility (Optional): Similar to identity, invertibility 

might or might not be present in a soft semigroup. If an 

element has an inverse, combining it with another element 

using the operation should yield the identity element. 

 

Applications 

1. Decision Analysis: Soft semigroups are used to model 

situations where the level of participation or preference 

of decision criteria varies. 

2. Fuzzy Mathematics: Soft semigroups are related to 

fuzzy mathematics, which deals with uncertainty and 

degrees of truth. 

3. Uncertainty Modeling: Soft semigroups find 

applications in modeling uncertain data or scenarios 

where precise information is lacking. 

4. Fuzzy Control: In control systems, soft semigroups can 

help model complex relationships involving degrees of 

control actions. 

 

Soft semigroups provide a framework to incorporate softness 

and degrees of membership into the traditional concept of 

semigroups. The membership function allows for a more 

nuanced representation of elements' participation in the 

operation, making it suitable for scenarios involving varying 

levels of involvement or uncertainty. 

 

1. Soft Natural Numbers Addition 

Consider the set of natural numbers \(\mathbb{N}\). Define 

the membership function \(\mu: \mathbb{N} \to [0, 1]\) such 

that \(\mu(n) = \frac{1}{n}\). The operation \(\ast\) is 

standard addition. This soft semigroup reflects that larger 

natural numbers have smaller degrees of participation in the 

addition. 

 

Example 1 

Consider the set of natural numbers \(\mathbb{N}\). Define 

the membership function \(\mu: \mathbb{N} \to [0, 1]\) such 

that \(\mu(n) = \frac{1}{n}\). Perform the soft addition 

operation \(\ast\) for \(a = 3\) and \(b = 5\). Calculate the 

resulting value using the given membership function. 

Answer: 

Given: \(a = 3\), \(b = 5\), and \(\mu(n) = \frac{1}{n}\). 

To perform the soft addition \(\ast\) for \(a\) and \(b\), we 

need to calculate \(\mu(a) \ast (a + b)\) using the given 

membership function. 

1. Calculate \(\mu(a) = \frac{1}{3}\). 

2. Calculate \(a + b = 3 + 5 = 8\). 

3. Multiply \(\mu(a)\) and \((a + b)\): 

 

\[\frac{1}{3} \ast 8 = \frac{8}{3}.\] 

 

So, the result of the soft addition operation \(\ast\) for \(a = 

3\) and \(b = 5\) is \(\frac{8}{3}\). 

 

In this example, the larger number \(b = 5\) has a smaller 

degree of membership (\(\mu(b) = \frac{1}{5}\)), and 

therefore contributes less to the soft addition. The result 

\(\frac{8}{3}\) indicates that the contribution of \(b\) to the 

addition is moderated by its smaller degree of membership. 

 

2. Soft Matrix Multiplication 

In the set of square matrices, the membership function could 

represent the condition number of each matrix. The operation 

\(\ast\) could be matrix multiplication. Matrices with smaller 

condition numbers have a higher degree of participation in 

the multiplication. 

 

Example 2 

Consider two \(2 \times 2\) matrices, \(A\) and \(B\), defined 

as follows: 

 

Matrix \(A\) =```| 2 1 || 3 4 |``` 

 

Matrix \(B\) =```| 5 6 || 7 8 |``` 

 

Additionally, the membership function \(\mu\) assigns 

degrees of belonging based on the determinant of each 

matrix. For matrix \(A\), \(\mu(A) = \frac{1}{\det(A)}\), and 

for matrix \(B\), \(\mu(B) = \frac{1}{\det(B)}\). Calculate 

the result of the soft matrix multiplication \(\ast\) for \(A\) 

and \(B\) using the given membership function. 

Answer: 

Given: Matrix \(A\) and \(\mu(A) = \frac{1}{\det(A)}\), 

Matrix \(B\) and \(\mu(B) = \frac{1}{\det(B)}\). 

To perform the soft matrix multiplication \(\ast\) for \(A\) 

and \(B\), we need to calculate \(\mu(A) \ast (A \times B)\) 

using the given membership function. 

1. Calculate the determinant of matrix \(A\): 

\[\det(A) = (2 \times 4) - (1 \times 3) = 8 - 3 = 5.\] 

2. Calculate the determinant of matrix \(B\): 

\[\det(B) = (5 \times 8) - (6 \times 7) = 40 - 42 = -2.\] 

3. Calculate \(\mu(A) = \frac{1}{\det(A)} = \frac{1}{5}\) 

and \(\mu(B) = \frac{1}{\det(B)} = -\frac{1}{2}\).  

4. Calculate the matrix product \(A \times B\):  

 ``` A × B = 
| 2 1 | × | 5 6 | = | (2 × 5) + (1 × 7) (2 × 6) + (1 × 8) | = | 19 20 | 

| 3 4 | | 7 8 | | (3 × 5) + (4 × 7) (3 × 6) + (4 × 8) | | 43 50 | ``` 
5. Calculate the soft matrix multiplication \(\mu(A) \ast (A 

\times B)\): 

\[\mu(A) \ast (A \times B) = \frac{1}{5} \ast 

\begin{bmatrix} 19 & 20 \\ 43 & 50 \end{bmatrix} = 

\begin{bmatrix} \frac{19}{5} & \frac{20}{5} \\ 

\frac{43}{5} & \frac{50}{5} \end{bmatrix}.\] 

So, the result of the soft matrix multiplication \(\ast\) for 

matrices \(A\) and \(B\) is: 

```| 19/5 4 | | 43/5 10 |``` 
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In this example, the membership degrees (\(\mu(A)\) and 

\(\mu(B)\)) affect the contribution of each matrix to the soft 

matrix multiplication, resulting in a matrix with elements 

adjusted according to their determinant-based degrees of 

belonging. 

 

3. Soft Set Intersection 

Consider the set of all subsets of a given universal set. 

Define the membership function such that \(\mu(A) = 

\frac{|A|}{|U|}\), where \(|A|\) is the size of set \(A\) and 

\(|U|\) is the size of the universal set. The operation \(\ast\) 

could be set intersection. 

 

Example -3 

Consider two soft sets \(A\) and \(B\) defined over the 

universal set \(U = \{1, 2, 3, 4, 5\}\). The membership 

functions for \(A\) and \(B\) are given as follows: 

 

Membership function for set \(A\) 

\[\begin{align*} 

\mu_A(1) &= 0.8 \\ 

\mu_A(2) &= 0.6 \\ 

\mu_A(3) &= 0.4 \\ 

\mu_A(4) &= 0.7 \\ 

\mu_A(5) &= 0.5 \\ 

\end{align*}\] 

 

Membership function for set \(B\) 

\[\begin{align*} 

\mu_B(1) &= 0.7 \\ 

\mu_B(2) &= 0.5 \\ 

\mu_B(3) &= 0.3 \\ 

\mu_B(4) &= 0.8 \\ 

\mu_B(5) &= 0.6 \\ 

\end{align*}\] 

 

Calculate the soft intersection \(\ast\) of sets \(A\) and \(B\) 

using the given membership functions. 

 

Answer 

Given: Membership functions for sets \(A\) and \(B\). 

To calculate the soft intersection \(\ast\) of sets \(A\) and 

\(B\), we need to determine the minimum membership value 

for each element in the intersection. 

1. Calculate the soft intersection \(\ast\) for each element 

\(x\) in the universal set \(U\) using the formula: 

 \[\mu_{A \ast B}(x) = \min\{\mu_A(x), \mu_B(x)\}.\] 

Calculating for each element: 

 For \(x = 1\), \(\mu_{A \ast B}(1) = \min\{0.8, 0.7\} = 

0.7\). 

 For \(x = 2\), \(\mu_{A \ast B}(2) = \min\{0.6, 0.5\} = 

0.5\). 

 For \(x = 3\), \(\mu_{A \ast B}(3) = \min\{0.4, 0.3\} = 

0.3\). 

 For \(x = 4\), \(\mu_{A \ast B}(4) = \min\{0.7, 0.8\} = 

0.7\). 

 For \(x = 5\), \(\mu_{A \ast B}(5) = \min\{0.5, 0.6\} = 

0.5\). 

 

So, the membership function for the soft intersection \(A \ast 

B\) is: 

\[\begin{align*} 

\mu_{A \ast B}(1) &= 0.7 \\ 

\mu_{A \ast B}(2) &= 0.5 \\ 

\mu_{A \ast B}(3) &= 0.3 \\ 

\mu_{A \ast B}(4) &= 0.7 \\ 

\mu_{A \ast B}(5) &= 0.5 \\ 

\end{align*}\] 

 

The soft intersection \(A \ast B\) consists of elements with 

membership values determined by taking the minimum value 

from the corresponding membership functions of sets \(A\) 

and \(B\). 

 

4. Soft Graph Intersection 

For the set of all subgraphs of a given graph, the membership 

function could represent the density of each subgraph. The 

operation \(\ast\) could be graph intersection. 

 

Example 4 

Consider two directed graphs \(G\) and \(H\) with vertex sets 

\(V_G = \{A, B, C, D\}\) and \(V_H = \{X, Y, Z\}\), 

respectively. The edges in \(G\) and \(H\) are defined as 

follows: 

 

Graph \(G\) edges 

 \(A \to B\) 

 \(B \to C\) 

 \(C \to D\) 

 \(D \to A\) 

 

Graph \(H\) edges 

 \(X \to Y\) 

 \(Y \to Z\) 

 \(Z \to X\) 

 

Additionally, the membership functions for vertices in \(G\) 

and \(H\) are given as follows 

Membership function for graph \(G\) 

\[\begin{align*} 

\mu_G(A) &= 0.8 \\ 

\mu_G(B) &= 0.6 \\ 

\mu_G(C) &= 0.4 \\ 

\mu_G(D) &= 0.7 \\ 

\end{align*}\] 

 

Membership function for graph \(H\) 

\[\begin{align*} 

\mu_H(X) &= 0.7 \\ 

\mu_H(Y) &= 0.5 \\ 

\mu_H(Z) &= 0.3 \\ 

\end{align*}\] 

Calculate the soft graph intersection \(\ast\) of graphs \(G\) 

and \(H\) using the given membership functions. 

Answer: 

Given: Edges and membership functions for graphs \(G\) and 

\(H\). 

To calculate the soft graph intersection \(\ast\) of graphs \(G\) 

and \(H\), we need to determine the minimum membership 

value for each common vertex between the two graphs. 

Common vertices: \(V_{\text{common}} = \{A, B, C\}\). 

1. Calculate the soft graph intersection \(\ast\) for each 

common vertex \(v\) using the formula: 

 \[\mu_{G \ast H}(v) = \min\{\mu_G(v), \mu_H(v)\}.\] 

 

Calculating for each common vertex 

 For \(v = A\), \(\mu_{G \ast H}(A) = \min\{0.8, 0.7\} = 

0.7\). 
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 For \(v = B\), \(\mu_{G \ast H}(B) = \min\{0.6, 0.5\} = 

0.5\). 

 For \(v = C\), \(\mu_{G \ast H}(C) = \min\{0.4, 0.3\} = 

0.3\). 

 

So, the membership function for the soft graph intersection 

\(G \ast H\) is 

\[\begin{align*} 

\mu_{G \ast H}(A) &= 0.7 \\ 

\mu_{G \ast H}(B) &= 0.5 \\ 

\mu_{G \ast H}(C) &= 0.3 \\ 

\end{align*}\] 

 

The soft graph intersection \(G \ast H\) consists of common 

vertices from graphs \(G\) and \(H\), with membership values 

determined by taking the minimum value from the 

corresponding membership functions of the vertices. 

 

5. Soft String Concatenation 

In the set of strings, the membership function could be based 

on the length of each string. Longer strings have a lower 

degree of membership. The operation \(\ast\) could be string 

concatenation. 

 

Example 5 

Consider two strings \(s\) and \(t\) defined as follows: 

String \(s\) = "hello" 

String \(t\) = "world" 

Additionally, the membership functions for characters in 

strings \(s\) and \(t\) are given as follows 

Membership function for string \(s\) 

\[\begin{align*} 

\mu_s('h') &= 0.9 \\ 

\mu_s('e') &= 0.7 \\ 

\mu_s('l') &= 0.5 \\ 

\mu_s('o') &= 0.8 \\ 

\end{align*}\] 

 

Membership function for string \(t\): 

\[\begin{align*} 

\mu_t('w') &= 0.8 \\ 

\mu_t('o') &= 0.6 \\ 

\mu_t('r') &= 0.4 \\ 

\mu_t('l') &= 0.7 \\ 

\mu_t('d') &= 0.9 \\ 

\end{align*}\] 

 

Calculate the soft string concatenation \(\ast\) of strings \(s\) 

and \(t\) using the given membership functions. 

Answer: 

Given: Strings \(s\) and \(t\) and their respective membership 

functions. 

To calculate the soft string concatenation \(\ast\) of strings 

\(s\) and \(t\), we need to determine the membership value for 

each character in the concatenated string. 

Concatenated string: \(u = "helloworld"\). 

1. Calculate the soft string concatenation \(\ast\) for each 

character \(c\) in the concatenated string \(u\) using the 

formula: 

\[\mu_{s \ast t}(c) = \begin{cases} 

\mu_s(c) & \text{if } c \in s \\ 

\mu_t(c) & \text{if } c \in t \\ 

\end{cases}\] 

 

Calculating for each character 

 For \(c = 'h'\), \(\mu_{s \ast t}('h') = \mu_s('h') = 0.9\). 

 For \(c = 'e'\), \(\mu_{s \ast t}('e') = \mu_s('e') = 0.7\). 

 For \(c = 'l'\), \(\mu_{s \ast t}('l') = \mu_s('l') = 0.5\). 

 For \(c = 'l'\), \(\mu_{s \ast t}('l') = \mu_s('l') = 0.5\). 

 For \(c = 'o'\), \(\mu_{s \ast t}('o') = \mu_s('o') = 0.8\). 

 For \(c = 'w'\), \(\mu_{s \ast t}('w') = \mu_t('w') = 0.8\). 

 For \(c = 'o'\), \(\mu_{s \ast t}('o') = \mu_t('o') = 0.6\). 

 For \(c = 'r'\), \(\mu_{s \ast t}('r') = \mu_t('r') = 0.4\). 

 For \(c = 'l'\), \(\mu_{s \ast t}('l') = \mu_t('l') = 0.7\). 

 For \(c = 'd'\), \(\mu_{s \ast t}('d') = \mu_t('d') = 0.9\). 

 

So, the membership function for the soft string concatenation 

\(s \ast t\) is 

\[\begin{align*} 

\mu_{s \ast t}('h') &= 0.9 \\ 

\mu_{s \ast t}('e') &= 0.7 \\ 

\mu_{s \ast t}('l') &= 0.5 \\ 

\mu_{s \ast t}('l') &= 0.5 \\ 

\mu_{s \ast t}('o') &= 0.8 \\ 

\mu_{s \ast t}('w') &= 0.8 \\ 

\mu_{s \ast t}('o') &= 0.6 \\ 

\mu_{s \ast t}('r') &= 0.4 \\ 

\mu_{s \ast t}('l') &= 0.7 \\ 

\mu_{s \ast t}('d') &= 0.9 \\ 

\end{align*}\] 

 

The soft string concatenation \(s \ast t\) consists of characters 

from both strings \(s\) and \(t\), with membership values 

determined by the corresponding membership functions of 

the characters. 

 

6. Soft Polynomial Composition 

Consider the set of all polynomials with real coefficients. 

The membership function could be based on the degree of 

each polynomial. The operation \(\ast\) could be polynomial 

composition. 

 

Example 6 

Consider two polynomials \(p(x)\) and \(q(x)\) defined as 

follows: 

Polynomial \(p(x)\) = \(3x^2 + 2x + 1\) 

Polynomial \(q(x)\) = \(2x^3 + x^2 - 4x + 5\) 

Additionally, the membership functions for coefficients in 

polynomials \(p(x)\) and \(q(x)\) are given as follows 

Membership function for polynomial \(p(x)\) 

\[\begin{align*} 

\mu_p(3) &= 0.9 \\ 

\mu_p(2) &= 0.7 \\ 

\mu_p(1) &= 0.5 \\ 

\end{align*}\] 

 

Membership function for polynomial \(q(x)\) 

\[\begin{align*} 

\mu_q(2) &= 0.8 \\ 

\mu_q(1) &= 0.6 \\ 

\mu_q(-4) &= 0.4 \\ 

\mu_q(5) &= 0.7 \\ 

\end{align*}\] 

Calculate the soft polynomial composition \(\ast\) of 

polynomials \(p(x)\) and \(q(x)\) using the given membership 

functions. 
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Answer 

Given: Polynomials \(p(x)\) and \(q(x)\), and their respective 

membership functions. 

To calculate the soft polynomial composition \(\ast\) of 

polynomials \(p(x)\) and \(q(x)\), we need to determine the 

membership value for the coefficient of each term in the 

composed polynomial. 

Composed polynomial: \(r(x) = p(q(x))\). 

1. Calculate the soft polynomial composition \(\ast\) for each 

coefficient \(c\) in the composed polynomial \(r(x)\) using 

the formula: 

\[\mu_{p \ast q}(c) = \begin{cases} 

\mu_p(c) & \text{if } c \text{ is a coefficient in } p(x) \\ 

\mu_q(c) & \text{if } c \text{ is a coefficient in } q(x) \\ 

\end{cases}\] 

Calculating for each coefficient: 

 For \(c = 3\), \(\mu_{p \ast q}(3) = \mu_p(3) = 0.9\). 

 For \(c = 2\), \(\mu_{p \ast q}(2) = \mu_q(2) = 0.8\). 

 For \(c = 1\), \(\mu_{p \ast q}(1) = \mu_q(1) = 0.6\). 

 For \(c = 1\), \(\mu_{p \ast q}(1) = \mu_q(1) = 0.6\). 

 For \(c = -4\), \(\mu_{p \ast q}(-4) = \mu_q(-4) = 0.4\). 

 For \(c = 5\), \(\mu_{p \ast q}(5) = \mu_q(5) = 0.7\). 

 

So, the membership function for the soft polynomial 

composition \(p \ast q\) is: 

\[\begin{align*} 

\mu_{p \ast q}(3) &= 0.9 \\ 

\mu_{p \ast q}(2) &= 0.8 \\ 

\mu_{p \ast q}(1) &= 0.6 \\ 

\mu_{p \ast q}(1) &= 0.6 \\ 

\mu_{p \ast q}(-4) &= 0.4 \\ 

\mu_{p \ast q}(5) &= 0.7 \\ 

\end{align*}\] 

The soft polynomial composition \(p \ast q\) consists of 

coefficients from both polynomials \(p(x)\) and \(q(x)\), with 

membership values determined by the corresponding 

membership functions of the coefficients. 

 

7. Soft Interval Arithmetic 

In the set of real intervals, the membership function could 

represent the length of each interval. Longer intervals have a 

lower degree of membership. The operation \(\ast\) could be 

interval intersection. 

 

Example 7 

Consider two intervals \(A\) and \(B\) defined as follows: 

Interval \(A\) = \([2, 5]\) 

Interval \(B\) = \([3, 7]\) 

Additionally, the membership functions for the endpoints of 

intervals \(A\) and \(B\) are given as follows: 

Membership function for interval \(A\) 

\[\begin{align*} 

\mu_A(2) &= 0.8 \\ 

\mu_A(5) &= 0.6 \\ 

\end{align*}\] 

 

Membership function for interval \(B\) 

\[ \begin{align*} 

\mu_B(3) &= 0.7 \\ 

\mu_B(7) &= 0.5 \\ 

\end{align*} \] 

Calculate the soft interval arithmetic \(\ast\) for intervals 

\(A\) and \(B\) using the given membership functions. 

Answer: 

Given: Intervals \(A\) and \(B\), and their respective 

membership functions. 

To calculate the soft interval arithmetic \(\ast\) for intervals 

\(A\) and \(B\), we need to determine the membership value 

for each endpoint of the resulting interval. 

Resulting interval: \(C = A \ast B\). 

1. Calculate the soft interval arithmetic \(\ast\) for each 

endpoint \(x\) of the resulting interval \(C\) using the 

formula: 

 \[\mu_{A \ast B}(x) = \max\{\mu_A(x), \mu_B(x)\}.\] 

Calculating for each endpoint: 

 For \(x = 2\), \(\mu_{A \ast B}(2) = \max\{0.8, 0\} = 

0.8\). 

 For \(x = 3\), \(\mu_{A \ast B}(3) = \max\{0, 0.7\} = 

0.7\). 

 For \(x = 5\), \(\mu_{A \ast B}(5) = \max\{0.6, 0.6\} = 

0.6\). 

 For \(x = 7\), \(\mu_{A \ast B}(7) = \max\{0, 0.5\} = 

0.5\). 

 

So, the membership function for the soft interval arithmetic 

\(A \ast B\) is: 

\[ \begin{align*} 

\mu_{A \ast B}(2) &= 0.8 \\ 

\mu_{A \ast B}(3) &= 0.7 \\ 

\mu_{A \ast B}(5) &= 0.6 \\ 

\mu_{A \ast B}(7) &= 0.5 \\ 

\end{align*} \] 

 

The soft interval arithmetic \(A \ast B\) consists of endpoints 

from both intervals \(A\) and \(B\), with membership values 

determined by taking the maximum value from the 

corresponding membership functions of the endpoints. 

 

8. Soft Vector Dot Product 

In the set of real vectors, the membership function could be 

based on the norm of each vector. Vectors with larger norms 

have lower degrees of membership. The operation \(\ast\) 

could be the dot product. 

 

Example 8 

Consider two vectors \(v\) and \(w\) defined as follows: 

Vector \(v\) = \(\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}\) 

Vector \(w\) = \(\begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}\) 

Additionally, the membership functions for the components 

of vectors \(v\) and \(w\) are given as follows: 

Membership function for vector \(v\) 

\[ \begin{align*} 

\mu_v(2) &= 0.8 \\ 

\mu_v(3) &= 0.6 \\ 

\mu_v(4) &= 0.4 \\ 

\end{align*} \] 

 

Membership function for vector \(w\) 

\[ \begin{align*} 

\mu_w(1) &= 0.7 \\ 

\mu_w(5) &= 0.5 \\ 

\mu_w(6) &= 0.3 \\ 

\end{align*} \] 

Calculate the soft vector dot product \(\ast\) for vectors \(v\) 

and \(w\) using the given membership functions. 

 

Answer 

Given: Vectors \(v\) and \(w\), and their respective 
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membership functions. 

To calculate the soft vector dot product \(\ast\) for vectors 

\(v\) and \(w\), we need to determine the membership value 

for each component of the resulting vector. 

Resulting vector: \(u = v \ast w\). 

1. Calculate the soft vector dot product \(\ast\) for each 

component \(c\) of the resulting vector \(u\) using the 

formula: 

 \[\mu_{v \ast w}(c) = \mu_v(c) \cdot \mu_w(c).\] 

Calculating for each component: 

 For \(c = 2\), \(\mu_{v \ast w}(2) = \mu_v(2) \cdot 

\mu_w(2) = 0.8 \cdot 0.7 = 0.56\). 

 For \(c = 3\), \(\mu_{v \ast w}(3) = \mu_v(3) \cdot 

\mu_w(3) = 0.6 \cdot 0.5 = 0.3\). 

 For \(c = 4\), \(\mu_{v \ast w}(4) = \mu_v(4) \cdot 

\mu_w(4) = 0.4 \cdot 0.3 = 0.12\). 

 

So, the membership function for the soft vector dot product 

\(v \ast w\) is: 

\[ \begin{align*} 

\mu_{v \ast w}(2) &= 0.56 \\ 

\mu_{v \ast w}(3) &= 0.3 \\ 

\mu_{v \ast w}(4) &= 0.12 \\ 

\end{align*} \] 

The soft vector dot product \(v \ast w\) consists of 

components from both vectors \(v\) and \(w\), with 

membership values determined by multiplying the 

corresponding membership functions of the components. 

 

9. Soft Probability Distributions 

Consider the set of all probability distributions over a 

discrete set of outcomes. The membership function could 

represent the entropy of each distribution. The operation 

\(\ast\) could be distribution convolution. 

 

Example 9 

Consider a discrete probability distribution \(X\) defined over 

the set of outcomes \(\{1, 2, 3, 4, 5\}\). The probabilities of 

each outcome are given by: 

\(P(X = 1) = 0.2\) 

\(P(X = 2) = 0.3\) 

\(P(X = 3) = 0.1\) 

\(P(X = 4) = 0.15\) 

\(P(X = 5) = 0.25\) 

 

Additionally, the membership functions for each probability 

value are given as follows 

Membership function for \(P(X = 1)\): \(\mu_{P(X=1)}(0.2) 

= 0.8\) 

Membership function for \(P(X = 2)\): \(\mu_{P(X=2)}(0.3) 

= 0.6\) 

Membership function for \(P(X = 3)\): \(\mu_{P(X=3)}(0.1) 

= 0.4\) 

Membership function for \(P(X = 4)\): \(\mu_{P(X=4)}(0.15) 

= 0.7\) 

Membership function for \(P(X = 5)\): \(\mu_{P(X=5)}(0.25) 

= 0.5\) 

Calculate the soft probability distribution \(\ast\) for the 

given probability distribution \(X\) using the given 

membership functions. 

 

Answer 

Given: Discrete probability distribution \(X\) and its 

respective membership functions. 

To calculate the soft probability distribution \(\ast\) for the 

given probability distribution \(X\), we need to determine the 

membership value for each probability value in the 

distribution. 

Resulting probability distribution: \(Y = X \ast 

\mu_{P(X)}\). 

1. Calculate the soft probability distribution \(\ast\) for each 

probability \(p\) in the resulting distribution \(Y\) using the 

formula: 

\[\mu_{Y}(p) = \mu_{P(X)}(p).\] 

Calculating for each probability 

 For \(p = 0.2\), \(\mu_{Y}(0.2) = \mu_{P(X)}(0.2) = 

0.8\). 

 For \(p = 0.3\), \(\mu_{Y}(0.3) = \mu_{P(X)}(0.3) = 

0.6\). 

 For \(p = 0.1\), \(\mu_{Y}(0.1) = \mu_{P(X)}(0.1) = 

0.4\). 

 For \(p = 0.15\), \(\mu_{Y}(0.15) = \mu_{P(X)}(0.15) = 

0.7\). 

 For \(p = 0.25\), \(\mu_{Y}(0.25) = \mu_{P(X)}(0.25) = 

0.5\). 

 

So, the membership function for the soft probability 

distribution \(Y\) is: 

\[\begin{align*} 

\mu_{Y}(0.2) &= 0.8 \\ 

\mu_{Y}(0.3) &= 0.6 \\ 

\mu_{Y}(0.1) &= 0.4 \\ 

\mu_{Y}(0.15) &= 0.7 \\ 

\mu_{Y}(0.25) &= 0.5 \\ 

\end{align*}\] 

 

The soft probability distribution \(Y\) consists of 

probabilities from the original distribution \(X\), with 

membership values determined by the corresponding 

membership functions of the probabilities. 

 

10. Soft Automata Composition 

In the set of finite automata, the membership function could 

be based on the number of states of each automaton. 

Automata with more states have lower degrees of 

membership. The operation \(\ast\) could be automata 

composition. 

 

Example 10 

Consider two finite automata \(A\) and \(B\) with states 

\(Q_A = \{q_0, q_1\}\) and \(Q_B = \{p_0, p_1\}\), 

respectively. The transition functions for \(A\) and \(B\) are 

defined as follows: 

Transition function \(\delta_A\) for automaton \(A\): 

 \(\delta_A(q_0, 0) = q_0\) 

 \(\delta_A(q_0, 1) = q_1\) 

 \(\delta_A(q_1, 0) = q_1\) 

 \(\delta_A(q_1, 1) = q_0\) 

 Transition function \(\delta_B\) for automaton \(B\): 

 \(\delta_B(p_0, 0) = p_1\) 

 \(\delta_B(p_0, 1) = p_0\) 

 \(\delta_B(p_1, 0) = p_1\) 

 \(\delta_B(p_1, 1) = p_0\) 

 

Additionally, the membership functions for the states of 

automata \(A\) and \(B\) are given as follows: 

Membership function for automaton \(A\): 
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\[\begin{align*} 

\mu_A(q_0) &= 0.9 \\ 

\mu_A(q_1) &= 0.7 \\ 

\end{align*}\] 

Membership function for automaton \(B\): 

\[\begin{align*} 

\mu_B(p_0) &= 0.8 \\ 

\mu_B(p_1) &= 0.6 \\ 

\end{align*}\] 

Calculate the soft automata composition \(\ast\) for automata 

\(A\) and \(B\) using the given membership functions. 

 

Answer 

Given: Finite automata \(A\) and \(B\), and their respective 

transition functions and membership functions. 

To calculate the soft automata composition \(\ast\) for 

automata \(A\) and \(B\), we need to determine the 

membership value for each state in the resulting composed 

automaton. 

 

Resulting composed automaton: \(C = A \ast B\). 

1. Calculate the soft automata composition \(\ast\) for each 

state \(s\) in the resulting composed automaton \(C\) 

using the formula: 

 

\[\mu_{A \ast B}(s) = \mu_A(s) \cdot \mu_B(s).\] 

 

Calculating for each state 

 For \(s = q_0\), \(\mu_{A \ast B}(q_0) = \mu_A(q_0) 

\cdot \mu_B(p_0) = 0.9 \cdot 0.8 = 0.72\). 

 For \(s = q_1\), \(\mu_{A \ast B}(q_1) = \mu_A(q_1) 

\cdot \mu_B(p_1) = 0.7 \cdot 0.6 = 0.42\). 

 

So, the membership function for the soft automata 

composition \(A \ast B\) is 

\[\begin{align*} 

\mu_{A \ast B}(q_0) &= 0.72 \\ 

\mu_{A \ast B}(q_1) &= 0.42 \\ 

\end{align*}\] 

 

The soft automata composition \(A \ast B\) consists of states 

from both automata \(A\) and \(B\), with membership values 

determined by multiplying the corresponding membership 

functions of the states. 

These examples demonstrate how the concept of soft semi 

groups can be applied to various mathematical structures, 

allowing for the incorporation of degrees of membership and 

softness into algebraic operations. 
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