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On ternary quadratic equation 5x 2y 3z  

 
MA Gopalan, R Anbuselvi, SA Shanmugavadivu 
 
Abstract 
The Ternary Quadratic Diophantine Equation given by 5x2 - 2y2 = 3z2 is analyzed for its patterns of 
non-zero integral solutions. A few interesting relations between the solutions and special polygonal 
numbers are exhibited. 
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Introduction 
The theory of diophantine equations offers a rich variety of fascinating problems [1-5]. For an 
extensive review of sizable literature and various problems, one may refer [6-20]. This 
communication concerns with yet another interesting ternary quadratic equation 5x
2y 3z 			for determining its infinitely many non-zero integral solutions. Also a few 
interesting relations among the solutions have been presented. 
 
Notations Used 
 T , -Polygonal number of rank n with size m. 
  - Pentagonal number of rank n with size k. 
  - Square Pyramidal number of rank n. 
 
Method Of analysis 
The Ternary Quadratic Diophantine Equation to be solved for its non-zero distinct integral 
solution is 
5x 2y 3z            (1) 
 
On substitution of linear transformations u v 0  
x u 2v, y u 5v          (2)  
In (1) leads to	u 10v 	z         (3) 
 
The corresponding solutions of (3) is the form  

2  
u 10             (4) 
z 10   
 
In view of (4), the solutions of (1) can be written as  

10 4  
10 10  
10   

 
Instead of (2), using the transformations	 u 2v, y u 5v, in (1), we get again (3) 
only. Thus, the integer solutions of (1) are obtained as  

10 4  
10 10  
10  

 
  

Internat ional  Journal  of  Applied Research 2015;  1(11):  179-181 



 

~ 180 ~ 

International Journal of Applied Research 
 

A few interesting properties observed are as follows: 
 
1. m, 3 z m, 3 168T , T , 	 ≡ 0	 mod	72  
2. y m, 2 z m, 2 T , T , 	 ≡ 0	 mod	40  
3. m, 1 T , T , 	 ≡ 1	 mod	6  
4. m, 2 T , T , 	 ≡ 4	 mod	2  
5. y 2,3n T , T , 	 ≡ 40	 mod	51  
6. z m, 4 T , T , 	 ≡ 16	 mod	10  
7. y m, n m, n ≡ 6mn 

a) y A, A 1 x A, A 1 ≡ 12t ,  
b) y A, A A 1 x A, A A 1 ≡ 12  
c) y A, A 1 A 2 x A, A 1 A 2 ≡ 36  

 
Pattern II 
Equation (3) is equivalent to 
 
  10  
 
Assume that        z a 10	b                    (5) 
Sub (5) in the above equation, 

√10 √10 √10 √10          (6) 
Equating the rational and irrational factors in (6), we get 

, 10  
, 2  

From which we obtained 
4 10  
10 10  

10  
A few interesting properties observed are as follows 
1. 3, , , 	≡ 9	 	22  
2. 4 , 1 , , ≡ 10	 	32  
3. 3 , 2 , , ≡ 40	 	69  
4. 2,2 80 , 4 ≡ 0 
5. Each of the following expressions represents a Nasty numbers 
(a) , ,  
(b) , ,  
(c) , 1 , 1  
Pattern III 
Equation (3) can be written as 
  10 1 ∗                (7) 
Assume that u 10a b                (8) 
Write 10	as	10 i√10 i√10              (9) 
Use (8) and (9) in (7) and employing the method of factorization. Define 

  √10 √10
√ √  

  √10 9 2 √10 √10	         (10) 

Equating the real and imaginary parts in (10) 

	 9 90 40               (11) 

	 18 2 20               (12) 

Our interest is to obtained the integer solutions, so that the values of zand v are integers for suitable choices of the parameters a 
and b. 
Put a=11A, b=11B in (8), (11) and (12), we get 

1210 121                  (13) 
22 198 220               (14) 
99 990 440               (15) 

Substituting (13) and (15) in (2), the corresponding integer solutions of (1) are given by 
 

	 770 165 396  
            	 110 231 990    (16) 

99 990 440  
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Thus equation (16) represents non-zero distinct integral solution of (1) on two parameters. 
A few interesting properties observed are as follows 
1. 7 1 , 	 1 , 13068 , ≡ 0 1445   
2. 1 2 , 9 1 2 , 50820 , ≡ 0 1979  
3. , 1 2 1 	 , 1 2 1 2 , 1 2 1 , 1452 ≡ 0 2419  
4. 1, 7 1, 2972 , , ≡ 0	 5009  
 
Conclusion 
To conclude, one may search for other patterns of solutions and their corresponding properties. 
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