

# International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2015; 1(11): 635-638 www.allresearchjournal.com Received: 21-08-2015 Accepted: 24-09-2015

### V Rajendran

Assistant Professor, Department of Mathematics, KSG College of Arts and Science, Coimbatore, TN, India

#### N Suresh

Assistant Professor, Department of Mathematics, KSG College of Arts and Science, Coimbatore, TN, India

Correspondence V Rajendran

Assistant Professor, Department of Mathematics, KSG College of Arts and Science, Coimbatore, TN, India

## On WI<sub>ĝ</sub>- Continuous and WI<sub>\*g</sub>-Continuous Functions in Ideal Topological Spaces

## V Rajendran, N Suresh

#### Abstract

In this paper we introduce and study the notions of  $wI_{g}$ -continuous and  $wI_{*g}$ -continuous,  $wI_{g}$ -irresolute and  $wI_{*g}$ -irresolute in ideal topological spaces, and also we studied their properties.

Keywords: wIg-closed, wIg-closed, wIg-continuous, wIg-continuous, wIg-irresolute, wIg-irresolute.

#### Introduction

Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett <sup>[5]</sup> once again investigated applications of topological ideals. The notion of I<sub>g</sub>-closed sets was first by Dontchev.et.al <sup>[3]</sup> in 1999. Navaneethakrishnan and Joseph <sup>[9]</sup> further investigated and characterized I<sub>g</sub>-closed sets and I<sub>g</sub>-open sets by the use of local functions. The notion of I<sub>\*g</sub>-closed sets was introduced by Ravi.et.al <sup>[10]</sup> in 2013. Recently the notion of wI<sub>g</sub>-closed sets and wI<sub>\*g</sub>-closed sets was introduced and investigated by Maragathavalli.et.al <sup>[8]</sup>. In this paper, we introduce the notions of wI<sub>g</sub>-continuous and wI<sub>\*g</sub>-continuous functions in ideal topological spaces.

An ideal I on a topological space  $(X, \tau)$  is a non-empty collection of subsets of X which satisfies the following properties. (1)  $A \in I$  and  $B \subseteq A$  implies  $B \in I$ , (2)  $A \in I$  and  $B \in I$ implies  $A \cup B \in I$ . An ideal topological space is a topological space  $(X, \tau)$  with an ideal I on X and is denoted by  $(X, \tau, I)$ . For a subset  $A \subseteq X$ ,  $A^*(I,\tau) = \{x \in X : A \cap U \notin I \text{ for every} U \in \tau (X, x)\}$  is called the local function of A with respect to I and  $\tau^{[6]}$ . We simply write  $A^*$ in case there is no chance for confusion. A Kuratowski closure operator cl\*(.) for a topology  $\tau^*(I, \tau)$  called the \*-topology, finer than  $\tau$  is defined cl\*(A) =  $A \cup A^*$  <sup>[11]</sup>. If  $A \subseteq X$ , cl(A) and int(A) will respectively, denote the closure and interior of A in  $(X, \tau)$ .

## **Definition 1.1.** A subset A of a topological space $(X, \tau)$ is called

- 1. g-closed <sup>[7]</sup>, if cl (A)  $\subseteq$  U whenever A  $\subseteq$  U and U is open in (X,  $\tau$ ).
- 2.  $\hat{g}$ -closed <sup>[12]</sup>, if cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is semi open in (X,  $\tau$ ).

## Definition 1.2. A subset A of a topological space $(X, \tau, I)$ is called

- 1.  $I_g$ -closed <sup>[9]</sup>, if  $A^* \subseteq U$  whenever  $A \subseteq U$  and U is open in X.
- 2.  $I_{\hat{e}}$ -closed <sup>[1]</sup>, if  $A^* \subseteq U$  whenever  $A \subseteq U$  and U is semi-open in X.
- 3.  $wI_{\hat{g}}$  closed <sup>[8]</sup>, if int(A\*)  $\subseteq$  U whenever A  $\subseteq$  U and U is semi-open in X.
- 4.  $wI_{*g}$ -closed <sup>[8]</sup>, if int(A\*)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\hat{g}$ -open in X.
- 5. \*g-closed <sup>[10]</sup>, if A\*  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\hat{g}$ -open in (X,  $\tau$ ).

**Definition 1.3.** A function f:  $(X, \tau, I) \rightarrow (Y, \sigma)$  is said to be

- 1. g-continuous <sup>[2]</sup>, if for every open set  $V \in \sigma$ ,  $f^{-1}(V)$  is g-open in  $(X, \tau)$ .
- 2.  $\hat{g}$ -continuous <sup>[12]</sup>, if for every open set  $V \in \sigma$ ,  $f^{-1}(V)$  is  $\hat{g}$ -open in  $(X, \tau)$ .

**Definition 1.4.** A function  $f: (X, \tau, I) \to (Y, \sigma)$  is said to be  $I_g$ -continuous <sup>[4]</sup>, if  $f^{-1}(V)$  is  $I_g$ -closed in  $(X, \tau, I)$  for every closed set V in  $(Y, \sigma)$ .

## 2. wI<sub> $\hat{g}$ </sub>-continuous and wI<sub>\*g</sub>-continuous.

**Definition 2.1:** A function  $f: (X, \tau, I) \rightarrow (Y, \sigma)$  is Said to be

- Weakly I<sub>ĝ</sub>-continuous (briefly wI<sub>ĝ</sub>-continuous) if f<sup>-1</sup>(V) is weakly I<sub>ĝ</sub>-closed set in (X, τ, I) for every closed set V in (Y, σ).
- Weakly I<sub>\*g</sub>-continuous (briefly wI<sub>\*g</sub>-continuous) if f<sup>-1</sup>(V) is weakly I<sub>\*g</sub>-closed set in (X, τ, I) for every closed set V in (Y, σ).

**Definition 2.2:** A function  $f : (X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$  is Said to be

- (i) wI<sub>ĝ</sub>-irresolute if f<sup>-1</sup>(V) is wI<sub>ĝ</sub>-closed in (X, τ, I<sub>1</sub>) for every wI<sub>ĝ</sub>-closed set V in (Y, σ, I<sub>2</sub>).
- (ii) wI<sub>\*g</sub>-irresolute if f<sup>-1</sup>(V) is wI<sub>\*g</sub>-closed in (X, τ, I<sub>1</sub>) for every wI<sub>\*g</sub>-closed set V in (Y, σ, I<sub>2</sub>).

**Theorem 2.3:** Ever continuous function is wIg-continuous.

**Proof:** Let f be a continuous function and let V be a closed set in  $(Y, \sigma)$ . Then  $f^{-1}(V)$  is closed set in  $(X, \tau, I)$ . Since every closed set is wl<sub>g</sub>-closed. Hence  $f^{-1}(V)$  is wl<sub>g</sub>-closed set in  $(X, \tau, I)$ . Therefore f is wl<sub>g</sub>-continuous.

**Example 2.4:** Let  $X = Y = \{a, b, c\}, \tau = \{\varphi, \{b\}, \{b,c\}, X\}, \sigma = \{\varphi, \{c\}, Y\}$  and  $I = \{\varphi, \{b\}\}$ . Let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is wIg-continuous but not continuous.

**Theorem 2.5:** Ever continuous function is wI<sub>\*g</sub>-continuous.

**Proof:** Let f be a continuous function and let V be a closed set in  $(Y, \sigma)$ . Then  $f^{-1}(V)$  is closed set in  $(X, \tau, I)$ . Since every closed set is wI<sub>\*g</sub>-closed. Hence  $f^{-1}(V)$  is wI<sub>\*g</sub>-closed set in  $(X, \tau, I)$ . Therefore f is wI<sub>\*g</sub>-continuous.

**Example 2.6:** In example 2.4, let the function  $f: (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is wI<sub>\*g</sub>-continuous but not continuous.

**Theorem 2.7:** Ever  $I_{\hat{g}}$ -continuous function is  $wI_{\hat{g}}$ -continuous.

**Proof:** Let f be a  $I_{\hat{g}}$ -continuous function and let V be a closed set in  $(Y, \sigma)$ , then  $f^{-1}(V)$  is  $I_{\hat{g}}$ -closed set in  $(X, \tau, I)$ . Since every  $I_{\hat{g}}$ -closed set is  $wI_{\hat{g}}$ -closed. Hence  $f^{-1}(V)$  is  $wI_{\hat{g}}$ -closed set in  $(X, \tau, I)$ . Therefore f is  $wI_{\hat{g}}$ -continuous.

**Example 2.8:** Let  $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a,b\}, \{a,b,c\}, X\}, \sigma = \{\phi, \{a,b\}, \{a\}, Y\}$  and  $I = \{\phi, \{a\}\}$ . Let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  is defined by f(a) = b, f(b) = c, f(c) = a, f(d) = d. Then the function f is wIg-continuous but not Ig-continuous.

**Theorem 2.9:** Ever  $\hat{g}$ -continuous function is wIgcontinuous.

**Proof:** Let f be an  $\hat{g}$ -continuous function and let V be a closed set in (Y,  $\sigma$ ), then  $f^{-1}(V)$  is  $\hat{g}$ -closed set in (X,  $\tau$ , I). Since every  $\hat{g}$ -closed set is wI $_{\hat{g}}$ -closed set. Hence  $f^{-1}(V)$  is wI $_{\hat{g}}$ -closed set in (X,  $\tau$ , I). Therefore f is wI $_{\hat{g}}$ -continuous.

**Example 2.10:** Let  $X = Y = \{a, b, c, d\}, \tau = \{\varphi, \{b\}, \{a,b,c\}, X\}, \sigma = \{\varphi, \{c\}, \{a,c\}, Y\} \text{ and } I = \{\varphi, \{c\}\}.$  Let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is wIg-continuous but not  $\hat{g}$ -continuous.

**Theorem 2.11:** Ever g-continuous function is  $wl_{g}$ -continuous.

**Proof:** Let f be a g-continuous function and let V be a closed set in  $(Y, \sigma)$ , then  $f^{-1}(V)$  is g-closed set in  $(X, \tau, I)$ . Since every g-closed set is  $wI_{g}$ -closed set. Hence  $f^{-1}(V)$  is  $wI_{g}$ -closed set in  $(X, \tau, I)$ . Therefore f is  $wI_{g}$ -continuous.

**Example 2.12:** Let  $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{c\}, \{b,c\}, X\}, \sigma = \{\phi, \{c\}, X\}$  and  $I = \{\phi, \{b\}\}$ . Let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is wI<sub>g</sub>-continuous but not g-continuous.

**Theorem 2.13:** Ever  $I_{*g}$ -continuous function is  $wI_{*g}$ -continuous.

**Proof:** Let f be an  $I_{*g}$ -continuous function and let V be a closed set in  $(Y, \sigma)$ . Then  $f^{-1}(V)$  is  $I_{*g}$ -closed set in  $(X, \tau, I)$ . Since every  $I_{*g}$ -closed set is w $I_{*g}$ -closed, hence  $f^{-1}(V)$  is w $I_{*g}$ -closed set in  $(X, \tau, I)$ . Therefore f is w $I_{*g}$ -continuous.

**Example 2.14:** Let  $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a,b\}, \{c,d\}, X\}, \sigma = \{\phi, \{c,d\}, Y\}$  and  $I = \{\phi, \{d\}\}$ . Let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is wI<sub>\*g</sub>-continuous but not I<sub>\*g</sub>-continuous.

**Theorem 2.15:** Ever g-continuous function is  $wI_{*g}$ -continuous.

**Proof:** Let f be a g-continuous function and let V be a closed set in  $(Y, \sigma)$ , then  $f^{-1}(V)$  is g-closed set in  $(X, \tau, I)$ . Since every g-closed set is wI<sub>\*g</sub>-closed set. Hence  $f^{-1}(V)$  is wI<sub>\*g</sub>-closed set in  $(X, \tau, I)$ . Therefore f is wI<sub>\*g</sub>-continuous.

**Example 2.16:** Let  $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a,b\}, \{a,b,c\}, X\}, \sigma = \{\phi, \{d\}, \{c,d\}, Y\} \text{ and } I = \{\phi, \{a\}\}.$  Let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is wI<sub>\*g</sub>-continuous but not g-continuous.

**Theorem 2.17:** Ever  $I_g$ -continuous function is  $wI_{\hat{g}}$ -continuous.

**Proof:** Let f be an I<sub>g</sub>-continuous function and let V be a closed set in (Y,  $\sigma$ ), then f<sup>-1</sup>(V) is I<sub>g</sub>-closed set in (X,  $\tau$ , I). Since every I<sub>g</sub>-closed set is wI<sub>g</sub>-closed set. Hence f<sup>-1</sup>(V) is wI<sub>g</sub>-closed set in (X,  $\tau$ , I). Therefore f is wI<sub>g</sub>-continuous.

**Example 2.18:** In example 2.16, let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is  $wI_{\hat{g}}$ -continuous but not  $I_g$ -continuous.

**Theorem 2.19:** Ever  $I_g$ -continuous function is  $wI_{*g}$ -continuous.

**Proof:** Let f be a I<sub>g</sub>-continuous function and let V be a closed set in  $(Y, \sigma)$ . Then  $f^{-1}(V)$  is I<sub>g</sub>-closed set in  $(X, \tau, I)$ .

Since every I<sub>g</sub>-closed set is wI<sub>\*g</sub>-closed set. Hence  $f^{-1}(V)$  is wI<sub>\*g</sub>-closed set in (X,  $\tau$ , I). Therefore f is wI<sub>\*g</sub>-continuous.

**Example 2.20:** Let  $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{a,b,c\}, X\}, \sigma = \{\phi, \{a\}, \{a,c,d\}, Y\}$  and  $I = \{\phi, \{d\}\}$ . Let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is wI<sub>\*g</sub>-continuous but not I<sub>g</sub>-continuous.

**Theorem 2.21:** Ever  $wI_{*g}$ -continuous function is  $wI_{\hat{g}}$ -continuous.

**Proof:** Let f be a  $wI_{*g}$ -continuous function and let V be a closed set in (Y,  $\sigma$ ). Then  $f^{-1}(V)$  is  $wI_{*g}$ -closed set in (X,  $\tau$ , I). Since every  $wI_{*g}$ -closed set is  $wI_{\hat{g}}$ -closed. Hence  $f^{-1}(V)$  is  $wI_{\hat{g}}$ -closed set in (X,  $\tau$ , I). Therefore f is  $wI_{\hat{g}}$ -continuous.

**Example 2.22:** Let  $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{d\}, \{a, b, c\}, X\}, \sigma = \{\phi, \{a\}, Y\}$  and  $I = \{\phi, \{b\}\}$ . Let the function  $f : (X, \tau, I) \rightarrow (Y, \sigma)$  be the idendity function. Then the function f is  $wI_{g}$ -continuous but not  $wI_{*g}$ -continuous.

**Theorem 2.23:** A map f:  $(X, \tau, I) \rightarrow (Y, \sigma)$  is  $wI_{\hat{g}}$ continuous iff the inverse image of every closed set in  $(Y, \sigma)$ is  $wI_{\hat{g}}$ - closed in  $(X, \tau, I)$ .

**Proof:** Necessary: Let v be a closed set in  $(Y, \sigma)$ . Since f is  $wI_{\hat{g}}$ - continuous,  $f^{-1}(v^{C})$  is  $wI_{\hat{g}}$ - closed in  $(X, \tau, I)$ . But  $f^{-1}(v^{C}) = X - f^{-1}(v)$ . Hence  $f^{-1}(v)$  is  $wI_{\hat{g}}$ - closed in  $(X, \tau, I)$ . I).

**Sufficiency:** Assume that the inverse image of every closed set in  $(Y, \sigma)$  is  $wI_{\hat{g}}$ - closed in  $(X, \tau, I)$ . Let v be a closed set in  $(Y, \sigma)$ . By our assumption  $f^{-1}(v^{C}) = X - f^{-1}(v)$  is  $wI_{\hat{g}}$ - closed in  $(X, \tau, I)$ , which implies that  $f^{1}(v)$  is  $wI_{\hat{g}}$ - closed in  $(X, \tau, I)$ . Hence f is  $wI_{\hat{g}}$ - continuous.

## Remark 2.24:

- (i) The union of any two  $wI_{\hat{g}}$  continuous function is  $wI_{\hat{g}}$  continuous.
- (ii) The intersection of any two wI<sub>ĝ</sub>- continuous function is need not be wI<sub>ĝ</sub>- continuous.

**Theorem 2.25:** Let  $f:(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$  and  $g:(Y, \sigma, I_2)$ 

- $I_2$ )  $\rightarrow$  (*Z*,  $\eta$ ,  $I_3$ ) be any two functions. Then the following hold.
- (i)  $g \circ f$  is  $wI_{\hat{g}}$  continuous if f is  $wI_{\hat{g}}$  continuous and g is continuous.
- (ii)  $g \circ f$  is  $wI_{\hat{g}}$  continuous if f is  $wI_{\hat{g}}$  irresolute and g is  $wI_{\hat{g}}$  continuous.
- (iii)  $g \circ f$  is  $wI_{\hat{g}}$  irresolute if f is  $wI_{\hat{g}}$  irresolute and g is irresolute.

## **Proof:**

- (i) Let v be a closed set in Z. Since g is continuous, g<sup>-1</sup>(v) is closed in Y. wI<sub>g</sub>-continuous of f implies, f<sup>-1</sup>(g<sup>-1</sup>(v)) is wI<sub>g</sub>-closed in X and hence g ∘ f is wI<sub>g</sub>-continuous.
- (ii) Let v be a closed set in Z. Since g is wI<sub>g</sub> -continuous, g<sup>-1</sup>(v) is wI<sub>g</sub> -closed in Y. Since f is wI<sub>g</sub> -irresolute, f<sup>1</sup>(g<sup>-1</sup>(V)) is wI<sub>g</sub> -closed in X. Hence g o f is wI<sub>g</sub> -continuous.
- (iii) Let v be a  $wI_{\hat{g}}$  -closed in Z. Since g is  $wI_{\hat{g}}$  irresolute, g<sup>-1</sup>(v) is  $wI_{\hat{g}}$  -closed in Y. Since f is  $wI_{\hat{g}}$  -irresolute, f<sup>1</sup>(g<sup>-1</sup>(v)) is  $wI_{\hat{g}}$  -closed in X. Hence g  $\circ$  f is  $wI_{\hat{g}}$  -irresolute.

**Theorem 2.26:** Let  $X = A \cup B$  be a topological space with

topology  $\tau$  and Y be a topological space with topology  $\sigma$ . Let  $f:(A, \tau/A) \rightarrow (Y, \sigma)$  and  $g:(B, \tau/B) \rightarrow (Y, \sigma)$  be  $wI_{\hat{g}}$ continuous maps such that f(x) = g(x) for every  $x \in A \cap B$ . Suppose that A and B are  $wI_{\hat{g}}$ -closed sets in X. Then the
combination  $\alpha: (X, \tau, I) \rightarrow (Y, \sigma)$  is  $wI_{\hat{\alpha}}$ - continuous.

**Proof:** Let F be any closed set in Y. Clearly  $\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F) = C \cup D$  where  $C = f^{-1}(F)$  and  $D = g^{-1}(F)$ . But C is  $wI_{\hat{g}}$ -closed in A and A is be  $wI_{\hat{g}}$ -closed in X and so C is  $wI_{\hat{g}}$ . closed in X. Since we have proved that if  $B \subseteq A \subseteq X$ , B is  $wI_{\hat{g}}$ -closed in A and A is  $wI_{\hat{g}}$ -closed in X, then B is  $wI_{\hat{g}}$ -closed in X. Also  $C \cup D$  is  $wI_{\hat{g}}$ -closed in X. Therefore  $\alpha^{-1}(F)$  is  $wI_{\hat{g}}$ -closed in X. Hence  $\alpha$  is  $wI_{\hat{g}}$ -continuous.

**Theorem 2.27:** A map f:  $(X, \tau, I) \rightarrow (Y, \sigma)$  is  $wI_{*g}$ continuous iff the inverse image of every closed set in  $(Y, \sigma)$ is  $wI_{*g}$ - closed in  $(X, \tau, I)$ .

**Proof:** Necessary: Let v be a closed set in  $(Y, \sigma)$ . Since f is  $wI_{*g}$ - continuous,  $f^{-1}(v^{C})$  is  $wI_{*g}$ - closed in  $(X, \tau, I)$ . But  $f^{-1}(v^{C}) = X - f^{-1}(v)$ . Hence  $f^{-1}(v)$  is  $wI_{*g}$ - closed in  $(X, \tau, I)$ . I).

**Sufficiency:** Assume that the inverse image of every closed set in  $(Y, \sigma)$  is  $wI_{*g}$ - closed in  $(X, \tau, I)$ . Let v be a closed set in  $(Y, \sigma)$ . By our assumption  $f^{-1}(v^{C}) = X - f^{-1}(v)$  is  $wI_{*g}$ - closed in  $(X, \tau, I)$ , which implies that  $f^{1}(v)$  is  $wI_{*g}$ - closed in  $(X, \tau, I)$ . Hence f is  $wI_{*g}$ - continuous.

#### Remark 2.28:

- (i) The union of any two  $wI_{*g}$  continuous function is  $wI_{*a}$ -continuous.
- (ii) The intersection of any two  $wI_{*g}$  continuous function is need not be  $wI_{*g}$  continuous.

**Theorem 2.29:** Let  $f:(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$  and  $g:(Y, \sigma, \sigma, I_2)$ 

 $I_2$ )  $\rightarrow$  (Z,  $\eta$ ,  $I_3$ ) be any two functions. Then the following hold.

- g ∘ f is w*I*\*g continuous if f is w*I*\*g continuous and g is continuous.
- (ii)  $g \circ f$  is  $wI_{*g}$  continuous if f is  $wI_{*g}$  irresolute and g is  $wI_{*g}$  continuous.
- (iii)  $g \circ f$  is  $wI_{*g}$  irresolute if f is  $wI_{*g}$  irresolute and g is irresolute.

#### **Proof:**

- (i) Let v be a closed set in Z. Since g is continuous, g<sup>-1</sup>(v) is closed in Y. w*I*<sub>\*g</sub>-continuous of f implies, f<sup>1</sup>(g<sup>-1</sup>(v)) is w*I*<sub>\*g</sub>-closed in X and hence g ∘ f is w*I*<sub>\*g</sub>-continuous.
- (ii) Let v be a closed set in Z. Since g is wI<sub>\*g</sub> -continuous, g<sup>-1</sup>(v) is wI<sub>\*g</sub> -closed in Y. Since f is wI<sub>\*g</sub> -irresolute, f<sup>1</sup>(g<sup>-1</sup>(V)) is wI<sub>\*g</sub> -closed in X. Hence g of is wI<sub>\*g</sub> continuous.
- (iii) Let v be a wI<sub>\*g</sub> -closed in Z. Since g is wI<sub>\*g</sub> irresolute, g<sup>-1</sup>(v) is wI<sub>\*g</sub> -closed in Y. Since f is wI<sub>\*g</sub> -irresolute, f<sup>-1</sup>(g<sup>-1</sup>(v)) is wI<sub>\*g</sub> -closed in X. Hence g ∘ f is wI<sub>\*g</sub> irresolute.

**Theorem 2.30:** Let  $X = A \cup B$  be a topological space with topology  $\tau$  and Y be a topological space with topology  $\sigma$ . Let  $f:(A, \tau/A) \rightarrow (Y, \sigma)$  and  $g:(B, \tau/B) \rightarrow (Y, \sigma)$  be  $wI_{*g}$ -

continuous maps such that f(x) = g(x) for every  $x \in A \cap B$ . Suppose that A and B are  $wI_{*g}$ -closed sets in X. Then the combination  $\alpha$ :  $(X, \tau, I) \rightarrow (Y, \sigma)$  is  $wI_{*g}$  - continuous.

**Proof:** Let F be any closed set in Y. Clearly  $\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F) = C \cup D$  where  $C = f^{-1}(F)$  and  $D = g^{-1}(F)$ . But C is  $wI_{*g}$  -closed in A and A is be  $wI_{*g}$  -closed in X and so C is  $wI_{*g}$  - closed in X. Since we have proved that if  $B \subseteq A \subseteq X$ , B is  $wI_{*g}$ -closed in A and A is  $wI_{*g}$ -closed in X, then B is  $wI_{*g}$ -closed in X. Also C  $\cup$  D is  $wI_{*g}$ -closed in X. Therefore  $\alpha^{-1}(F)$  is  $wI_{*g}$ -closed in X. Hence  $\alpha$  is  $wI_{*g}$ -continuous.

## References

- J Antony Rex Rodrigo, O Ravi, A Naliniramalatha. ĝclosed sets in ideal topological spaces, Methods of Functional Analysis and Topology, 2011; 17(3):274-280.
- Balachandran K, Sundaram P, Maki H. On generalized continuous maps in topological spaces. Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 1991; 12:5-13.
- Dontchev J, Ganster M, Noiri T. Unified approach of generalized closed sets via topological ideals, Math. Japan, 1999; 49:395-401.
- 4. V Indhumathi, S Krishnaprakash, N Rajamani. Strongly I-locally closed sets and decompositions of \*-continuity, Acta Math. Huger, (to appear).
- 5. Jankovic D, Hamlett TR. New topologies from old via ideals, Amer. Math. Monthly, 1990; 97(4):295-310.
- 6. Kuratowski Topology, Academic press, Newyork, 1966, I.
- Levine N. Generalized closed sets in topology. Rend. Circ. Mat. Palermo 1970; 19:89-96.
- 8. Maragathavalli S, Suresh N, Revathi A. Weakly  $I_{\hat{g}}$ -closed sets and weakly  $I_{*g}$ -closed sets in ideal topological spaces, (communicated).
- Navaneethakrishnan M, Paulraj joseph J. g-closed sets in ideal topological spaces, Acta math Hunger, 2008; 119:365-371.
- O Ravi, S Tharmar, S Sangeetha, J Antony Rex Rodrigo.
   \*g-closed sets in ideal topological spaces, Jordan journal of Mathematics and Statistics (IJMS) 2013; 6(1):1-13.
- 11. R Vaidyanathaswamy. Set topology, Chelsea, Publishing company, Newyork, 1960.
- 12. Veerakumar MKRS. *ĝ*-closed sets in topological spaces, Math, Soc, 2003; 18:99-112.