

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2015; 1(7): 835-836 www.allresearchjournal.com Received: 12-05-2015 Accepted: 19-06-2015

Birendra Prasad Research Scholar, Department of Maths, V.K.S.U., Arrah, Bihar, India

A few results on linear space with the notion of semi convex set

Birendra Prasad

DOI: https://doi.org/10.22271/allresearch.2015.v1.i7n.7398

Abstract

In this work we have establish a few results on linear space with the notion of semi convex set.

Keywords: Linear space, convex set

Introduction

In this present paper we have establish a few results extending the notion of semi convex set introduced by Sharan, ^[1].

Definition: For definition we refer to Sharan, ^[1]. However we give below some of the definition to serve as ready reference.

Semi Convex Set: A non-empty subset C of linear space E is said to be semi convex set if for x, $y \in C$, $\alpha, \beta \ge 0$, $\alpha x + \beta y$ is in C for $\alpha + \beta \le 1$. Clearly every semi convex set is a convex set. The converse may or may not be.

Zero Space: A linear space may consist solely of the vector 0 (zero) with scalar multiplication defined by $\alpha \cdot 0 = 0$ for every α we call this linear space at zero space and we always denoted it by $\{0\}$.

Clearly every zero space is semi convex set.

In this section we establish a few results using the definitions given in the section 2.

Theorem (3.1): Any finite linear combination of semi convex set is again a semi convex set. **Proof:** Let $A_1, A_2, A_3 \dots A_n$ be n semi convex sets.

Also let $a_1, a_2, a_3 \dots a_n$ be a scalars. Then our problem is to show that $a_1A_1 + a_2A_2 + a_3A_3 + \ldots + a_nA_n$ is also a semi convex set. For, let z_1 , $z_2 \in a_1 A_1 + a_2 A_2 + a_3 A_3 + \dots + a_n A_n$ then $Z_1 = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n$ Where $x_i \in A_i$ for I = 1, 2, 3, ..., nSimilarly $z_2 = a_1x'_1 + a_2x'_2 + a_3x'_3 + \dots + a_nx'_n$ where $i \in A_i$ for $i = 1, 2, 3, \dots, n$ Again let, α , $\beta \ge 0$ and $\alpha + \beta \le 1$ Then $\alpha z_1 + \beta z_2 = \alpha (a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n) + \beta (a_1x'_1 + a_2x'_2 + a_3x'_3 + \dots + a_nx'_n)$ $= (\alpha x_1 + \beta x'_1)a_1 + (\alpha x_2 + \beta x'_2)a_2 + \dots + (\alpha x_n + \beta x'_n)a_n$ Since x_iandx'_i \in A_i and t is supposed already that α , $\beta \ge 0$ and $\alpha + \beta \le 1$. Also A_i is semi convex set for each i. Thus $\alpha x_i + \beta x'_I \in A_i$ Hence $a_1 + \beta z_2 = (a_1A_1 + a_2A_2 + a_3A_3 + \dots + a_nA_n)$ Therefore $a_1A_1 + a_2A_2 + a_3A_3 + \ldots + a_nA_n$ is also semi convex set.

Corresponding Author: Birendra Prasad Research Scholar, Department of Maths, V.K.S.U., Arrah, Bihar, India **Theorem (3.11)**: Let M be a semi convex set in a linear space E. if $x_1, x_2, x_3, \ldots, x_n \in M$ then all elements of the form $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_n x_n \in M$ Where all $\alpha_i \ge 0$ and $\alpha_1 + \alpha_2 + \alpha_3 + \ldots + \alpha_n \le 1$.

Proof: We prove the theorem by the method of induction.

If n=2, the theorem holds because M is a semi convex set thus we assume that the theorem holds good for (n=1) then it is sufficient to show that the theorem holds good for also,

For, we may assume that $\alpha_1 + \alpha_2 + \alpha_3 + \ldots + \alpha_{n-1} > 0$

Because then $\alpha_1 + \alpha_2 + \alpha_3 + \ldots + \alpha_{n-1} = 0$ each of $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_{n-1}$ is zero and hence $\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_{n-1} x_{n-1} + \alpha_n x_n = \alpha_n x_n = x_n \in M$ and which proves the results

Thus we suppose that

 $\begin{array}{lll} \lambda & = & \alpha_1 + \alpha_2 + \alpha_3 + \ldots + \alpha_{n-1} > 0 \\ Then \alpha_1 / \lambda + \alpha_2 / \lambda + \alpha_3 / \lambda + \ldots + \lambda_{n-1} / \lambda = 1 \\ Thus by the method of the assumption of the induction \\ y & = & (\alpha_1 / \lambda) x_1 + (\alpha_2 / \lambda) x_2 + (\alpha_3 / \lambda) x_3 + \ldots + (\alpha_{n-1} / \lambda) x_{n-1} \in M \end{array}$

Thus $\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$

 $\begin{array}{rcl} &=& \lambda((\alpha_1/\lambda)x_1 + (\alpha_2/\lambda)x_2 + (\alpha_3/\lambda)x_3 + \ldots + (\alpha_{n-1}/\lambda)x_{n-1}) + \alpha_n x_n \\ &=& \lambda y + \alpha_n x_n \in M \end{array}$

But M is supposed to be a semi convex set. Thusy, $x_n \in M$ and $\lambda + \alpha_n + \leq |$ Hence the theorem is established.

Reference

- 1. Rudin, walter. Functional Analysis Tata McGraw Hill, India.
- 2. Jha KK. Lattice theory, Navbharat Publishing house, Delhi-6, Patna-4