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Abstract 
Water bodies of the world are gradually eutrophicated because of human interference in different ways 
like pesticide use, industrialization etc. The eutrophicated water is the good habitat for the luxuriant 
growth of algae and bloom forming cyanobacterial species. These blooms are harmful to animals and 
human being as they produce various toxic metabolites. Many studies have been done to elucidate the 
factors responsible for cyanobacterial bloom formation and their toxin production. As reported in these 
studies, factors favourable for cyanobacterial bloom formation are: light intensity, temperature, pH, 
nutrient in the form of phosphorus and water stability. But it is difficult to find out the factors 
responsible for cyanotoxin production. Some species of cyanobacteria have the ability to produce 
varieties of cyanotoxins. The cyanotoxins are neurotoxin, hepatotoxin, dermatotoxin, endotoxin and 
others. The effects of these toxins depend on the routes of exposure. So the drinking-water operators 
must beware about the growth pattern and species of cyanobacteria that dominate the bloom, the 
properties of the cyanotoxins (i.e., intracellular or extracellular), and the most effective treatment 
processes of these toxins. 
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Introduction 
Due to eutrophication and climatic changes (Markensten et al., 2010; Paerl and Huisman, 
2009) [47, 58] cyanobacterial blooms have increased in marine and freshwater ecosystems 
worldwide. These blooms severely disrupt the functioning of these ecosystems, affecting 
animals and human health. The photoautotropic cyanobacteria are found naturally in lakes, 
streams, ponds, and other surface waters (Paerl and Huisman, 2009) [58]. In suitable 
environmental conditions, they rapidly multiply in surface water causing "blooms". 
Carmichael (1992) [12] reported that the obligatory factors responsible for cyanobacterial 
bloom formation are light intensity, total sunlight duration, nutrient availability (especially 
phosphorus), water pH, increase in precipitation events and water column stability (whether 
water is calm or fast-flowing). Under favorable conditions of light and nutrient, some species 
of Nostoc, Nodularia, Anabaena, Oscillatoria, Aphanizomenon, Microcystis, Anabeanopsis, 
Planktothrix, Cylindrospermopsis, Lyngbya, Rhaphidiopsis, Umezakia, Synechococcus, 
Hapalosiphon and Schizothrix produce toxic secondary metabolites known as cyanotoxins 
(Dadheech et al., 2001; Oberhaus et al., 2007; Briand et al., 2005; Codd et al., 1999; 
Agrawal et al., 2012) [24, 56, 10, 22, 1]. The blooms of BGA consume maximum oxygen and 
create anoxic condition. The toxins produced by these blooms are usually released into water 
(extracellular toxins) when the cells rupture or die (Bagchi, 1999) [5]. In most cases, 
cyanobacterial toxins such as anatoxin-a and the microcystin variants are found 
intracellularly (approximately 95%) in the cytoplasm and are retained within the cell. These 
toxins are found during the growth stage of the bloom (United States Environmental 
Protection Agency, 2012) [68]. However, Cylindrospermopsis, Aphanizomenon and Umezakia 
produce cylindrospermopsin, a significant amount of which may be naturally released in to 
the water by the live cyanobacterial cell; the ratio is about 50% intracellular and 50% 
extracellular (United States Environmental Protection Agency, 2012, Griffiths and Saker, 
2003) [68, 32]. Extracellular toxins may be absorbed by clays, and organic materials dissolve in 
the water column, which is difficult to remove than the intracellular toxins (Griffiths and 
Saker, 2003) [32]. Westrick et al., 2010 [71] have reported four classes of Cyanotoxins are 
reported i.e. microcystins, cyclindrospermopsin, anatoxin-a and saxitoxins. Microcystins are 
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type of hepatotoxin reported from genera Microcystis, 
Anabaena, Planktothrix, Nostoc and Anabaenopsis and this 
toxin is water soluble. (Westrick et al., 2010) [71]. This 
review synthetizes the precise information on cyanotoxin and 
cyanoblooms produced by the species of cyanobacteria, and 
their prevalence in the world. 
 
Results 
Cyanobacterial Blooms 
Cyanobacterial blooms causes foul odour and taste of water 
and thereby deteriorating the water quality (Churro et al., 
2012) [18]. Cyanobacteria are widely distributed in all natural 
ecosystems such as land, soil, fresh water, oceans, estuarine 
salt lakes, salt marshes, and also in hypersaline salt pans 
(Fogg et al., 1973) [31]. These organisms respond to 
eutrophication by the development of massive populations, 
in the form of blooms, scums and mats (Fogg et al., 1973; 
Sutcliffe & Jones, 1992) [31, 66]. Since, cyanobacterial bloom 
can present a range of amenity like change in water quality, 
production of toxin and ultimately hazards to human and 
animal health, the mass populations of blooms; scums etc. 
have attracted the attention of environment agencies, water 
authorities, human and animal health organizations, (NRA, 
1990; NSWBGATF, 1992; Ferguson et al., 1996) [54, 55, 30]. 
Under favorable conditions of light intensity, nutrient 
availability (especially phosphorus), temperature, pH and 
water stability, cyanobacteria can grow rapidly in surface 
water and cause bloom (Carmichael, 1992; Humbert et al., 
2010; Dadheech et al., 2001; Rolland et al., 2010) [12, 36, 62, 24, 

61]. In temperate regions, cyanobacterial bloom occur in 
summer as temperature and light intensity are high, and 
nutrient removal and water column are stable (Sivonen, 
1996) [64]. However, in tropical regions where such 
conditions prevail throughout the year, blooms can occur at 
any time and last for a few weeks at a time (Mowe et al., 
2014) [51]  
Majority of blooms (77%) in Asia and (66%) Africa (Figure 
1) is caused by Microcystis sp., generally Microcystis 
aeruginosa (Mowe et al., 2014) [51]. This species is dominant 
in all blooms of India, Turkey, Sri Lanka, Japan, Korea, 
Thailand, Saudi Arabia and Indonesia (Sangolkar et al., 
2009; Albay et al., 2003; Jayatissa et al., 2006; Ueno et al., 
1997; Codd et al., 2005a; Mohamed, 2008) [63, 3, 37, 67, 21, 49]. 
The other bloom forming genera in Asia are Anabaena, 
Cylindrospermopsis, Aphanizomenon, Nodularia, 
Synechococcus, Oscillatoria and Plankthotrix (Jewel et al., 
2003; Codd et al., 2005a; Chorus, 2012; Mowe et al., 2014) 
[38, 21, 17, 51], Plankthotrix zahidii in Vietnam (Ngueyen et al., 
2007) [53], Trichodesmium formed bloom in India 
(Desikachary, 1959) [25]. In Africa, the most prevalent genera 
are Anabaena and Cylindrospermopsis (Codd et al., 2005a; 
Mowe et al., 2014) [21, 51], genera Aphanizomenon, 
Oscillatoria, Lyngbya and Anabaenopsis in Kenya, Nigeria, 
Zimbabwe and Uganda (Kotut et al., 2010; Chia et al., 2009; 
Kunz, 2011; Poste et al., 2013, Mowe et al., 2014) [40, 16, 42, 59, 

51], Phormidium, Nostoc and Plectonema in Nile River 
blooms of Egypt (Mohamed et al., 2006) [50]. 
According to Mowe et al., (2014) [51], Cylindrospermopsis is 
the dominant bloom-forming genus in tropical America 
(South America) and formed 47% of the bloom. In second 
position, genus Microcystis formed bloom in South and 
Central America (35%). Other bloom-forming genera are 
Anabaena, Lyngbya, Plankthotrix, Aphanizomenon and 

Oscillatoria in Brasilia, Guatemala, Uruguay, Cuba, 
Argentina (Codd et al., 2005a; Rejmánkova et al., 2011; 
Lagos et al., 1999; Fabre et al., 2010; Bonilla et al., 2012) [21, 

60, 43, 28, 8], Raphidiopsis in Brasilia and Argentina (Vieira et 
al., 2003; Echeniques and Aguilera, 2009) [70, 27], 
Cuspidothrix in bloom of Uruguay (Codd et al., 2005a) [21]. 
Dominant bloom-forming genera in North America are 
Microcystis (Microcystis aeruginosa) and Anabaena (Codd 
et al., 2005a) [21], Cylindrospermopsis and Plankthotrix in 
United States and Canada (Chorus, 2012) [17], 
Aphanizomenon in Canada (Chorus, 2012) [17] and 
Anabaenopsis in United States (Manganelli et al., 2012) [46]. 
Codd et al. (2005a) [21] reported that Nodularia and 
Microcystis were the dominant bloom-forming genus in 
Australia and New Zealand, Cylindrospermopsis raciborskii 
is in tropical Australia, accounting for 87.5% of blooms 
(Mowe et al., 2014) [51], Anabaena, Aphanizomenon, 
Oscillatoria, Nostoc, Plankthotrix and Scytonema in 
Australia and New Zealand (Codd et al., 2005a; Wood et al., 
2011; Smith et al., 2011) [21, 65, 72, 65]. 
In Europe, cyanobacteria bloom is dominated by Microcystis 
and Planthotrix (Briand et al., 2008; Sabart et al., 2010) [9, 

62], Anabaena and Aphanizomenon in Europe, Nodularia in 
Denmark and Poland; Cylindrospermopsis in Greece and 
Portugal; Phormidium in France; Oscillatoria in Italy and 
Switzerland; and Woronichinia in Netherlands (Chorus, 
2012; Codd et al., 2005a; Manganelli et al., 2012) [17, 21, 46]. 
 
Cyanotoxins 
Some species of cyanobacteria have the ability to produce 
toxins. The difficulty is that, potential toxin producing 
cyanobacterial strains may be present, but they may not be 
producing toxin in all season (Leitao and Coute, 2005; 
Westrick et al., 2010, Sabart et al., 2010) [44, 71, 62]. Visual 
identification by a trained taxonomist or molecular analysis 
is needed for proper identification of toxin producing 
cyanobacteria (Dittmann et al., 1997). In each case, 
quantitative cyanotoxin analysis is necessary to know 
whether the cyanobacteria are actually producing the toxin. 
Toxic bloom forming cyanobacteria are Nostoc, Nodularia, 
Anabaena, Oscillatoria, Aphanizomenon and Microcystis 
species which are found in freshwater, brackish and marine 
waters, associated with planktonic and benthic producer cells 
(Table 1), throughout the world (Carmichael, 1992, 1997; 
Codd, 1995, 1998; Sivonen, 1996; Dadheech et al., 2001) [12, 

14, 19, 20, 64, 24]. Other toxin producing species are 
Anabeanopsis, Planktothrix, Cylindrospermopsis, Lyngbya, 
Rhaphidiopsis, Umezakia, Synechococcus, Hapalosiphon and 
Schizothrix (United States Environmental Protection Agency, 
2012; Oberhaus et al., 2007; Briand et al., 2005; Codd et al., 
1999; Agrawal et al., 2012) [68, 56, 10, 22, 1]. The cyanotoxins are 
neurotoxins (affect the nervous system), hepatotoxins (affect 
the liver), and dermatoxins (affect the skin) (Bagchi, 1999) 
[5]. Toxin production varies between species within a single 
genus, and between laboratory isolates of a particular species 
(Codd et al., 1999) [22]. Cyanotoxins are: microcystin, 
cylindrospermopsin, nodularin, anatoxin-a, saxitoxin, 
lyngbyatoxin, aplysiatoxin, endotoxin and other LPS 
(Table1). Oscillatoria and Anabaena both produce four (4) 
types of toxins. Microcystis, Lyngbya, Aphanizomenon and 
Cylindrospermospsis produce three (3) types and the rest 
species produce one type of toxin (Figure 1). 
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Fig 1: Blue color part in the world map represent studies on 
cyanobloom and cyanotoxin 

 
 

Fig 2: Cyanotoxins producing genera and the types of toxins 

 
Table 1: Sources and types of cyanobacterial toxins 

 

Toxin Producer genera Habitats 

Neurotoxins 
Anatoxin-a 

Anabaena, Oscillatoria F, B 
Microcystis, Phormidium F 

Cylindrospermum, Aphanizomenon F, B 
Anatoxin-a(s) Anabaena F 

Saxitoxins Aphanizomenon, Anabaena, Lyngbya, Cylindrospermopsis F 

Hepatotoxins 

Microcystin 

Microcystis, Anabaena F, B 
Oscillatoria, Nostoc F, B 
Anabaenopsis, others F 
Hapalosiphon, others T 

Nodularin 
Nodularia B, F 

Cyanobacterial symbiont(s) ? M 

Cylindrospermopsin 
Cylindrospermopsis F 

Aphanizomenon F 
Umezakia B 

Endotoxins and others 

LPS Microcystis, Oscillatoria F 
Lyngbyatoxin Lyngbya M 

Aplysiatoxin 
Lyngbya, Oscillatoria M 

Schizothrix M 
 F, freshwater ; B, brackish waters ; M, marine; T, terrestrial. 

 
Basing on the survey of literature (Table 1), it is noted that 
the most frequently occurring toxin worldwide is 
microcystin. Cyclindospermopsin is another type of 
hepatotoxin and is water soluble reported from genera 
Cylindrospermopsis, Anabaena, Umezakia and 
Aphanizomenon. Carmichael (2011) [15] noticed that 
microcystins were detected in 80% of 677 freshwater sources 
in USA and Canada. In Africa, after microcystins, there are 
anatoxin-a, saxitoxin and LPS (Oudra et al., 2002; Van 
Halderen et al., 1995, Ballot et al., 2014) [57, 69, 7]. Anatoxin-a 
is detected in Kenya by Ballot et al. (2005) [6] and in Nigeria, 
saxitoxin, anatoxin-a, anatoxin-a(s) and cylindropermopsin 
types of cyanotoxins are identified (Mowe et al., 2014) [51]. 
In Asia, anatoxin-a and LPS are found in Saudi Arabia, 
Japan and Singapore (Maske et al., 2010; Ahmed et al., 
2008; Hadas et al., 2000; Jayatissa et al., 2006, Chorus, 
2012, Manganelli et al., 2012) [48, 2, 33, 37, 17, 46]. Anatoxin-a 
and saxitoxin are found in European countries (Chorus, 
2012; Manganelli et al., 2012; Codd et al., 2005a; Lopes and 
Vasconcelos, 2011) [17, 46, 21, 45].  
Anatoxin-a is a type of neurotoxin, produced by three genera 
Anabaena, Planktothrix and Aphanizomenon (Westrick et al., 
2010) [71]. Saxitoxins are neurotoxins, found commonly in 
red tides caused by marine dinoflagellates blooms and acts as 
paralytic shellfish poisons causing animal death. This toxin is 
found in genera Aphanizomenon, Anabaena, Lyngbya and 

Cyclindrospermopsis (Westrick et al., 2010) [71]. Nodularin is 
reported from Finland, Poland and United Kingdom (Codd et 
al., 2005a) [21], while homoanatoxin-a is reported at Ireland 
(Codd et al., 2005) [21]. Anatoxin-a, saxitoxin, nodularin, 
homoanatoxin-a are found in Australia and New Zealand 
(Negri et al., 1995; Heresztyn and Nicholson, 1997; Churro 
et al., 2012) [52, 35, 18]. Studies on cyanotoxins of America 
(North and South) revealed the presence of anatoxin-a and 
saxitoxin (Campos et al., 1999; Azevedo et al., 2002; 
Carmichael, 1996 and 2011) [11, 4, 13, 15]. Nodularin, 
debromoaphysiatoxin and aplysiatoxin are found in United 
States, Canada and Brasilia (Carmichael, 2011) [15].  
 
Exposure routes and effect of toxins on health  
The presence of high levels of cyanotoxins in water 
(recreational and drinking water) may cause a diverse range 
of symptoms including fever, headaches, rashes, muscle and 
joint pain, mouth ulcers, blisters, diarrohea, stomach cramps, 
vomiting and allergic reactions in humans (United States 
Environmental Protection Agency, 2012; Codd et al., 2005b; 
Leitao and Coute, 2005, Kuiper-Goodman et al., 1999; Codd 
et al., 2005b) [68, 23, 44, 41], liver failure, respiratory arrest and 
rarely death may occur. Long-term exposure to microcystins 
and cylindrospermopsin promote growth of tumors, and 
cause cancer (Bagchi, 1999; Jones, 1993; Humbert et al., 
2010) [5, 36, 62]. There are many reports of dog, bird and 
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livestock deaths throughout the world as a result of 
consumption of surface water with cyanobacterial blooms 
(Carmichael, 2011; Harding and Paxton, 2001; Van Halderen 
et al., 1995) [15, 34, 69]. The most serious known episode 
associated to human exposure to cyanotoxins occurred in 
Brazil, where 56 out of 130 haemodialysed patients died 
after treatment with MC contaminated water (Azevedo et al., 
2002) [4]. The toxins produced by the marine cyanobacteria 
cause diseases including paralytic shellfish poisoning (PSP), 
diarrheic shellfish poisoning (DSP), azaspiracid poisoning 
(AZP), neurotoxic shellfish poisoning (NSP) and ciguatera 
fish poisoning (CFP) (Humbert et al., 2010) [36, 62]. The 
currently perceived exposure routes are skin contact (dermal 
route), inhalation, haemodialysis and ingestion (oral route) 
(Figure 3 and table 2). More than one exposure route may 
also operate simultaneously (Codd et al., 1999; Leitao and 
Coute, 2005) [22, 44] 
 

 
 

Fig 3: Exposure routes of organism to cyanobacteria 
 
Cyanotoxin and Bloom Management 
When cyanoblooms are detected in the surface water of 
water system, measures should be taken by the operators to 
remove or inactivate those blooms in a number of ways. For 
inactivation or removal the drinking water operators must 
know the growth patterns and species of cyanobacteria that 
dominate the bloom and whether the cyanotoxins produced 
are extracellular or intracellular. Three management 
strategies are recommended to minimize the consumer 
exposure to cyanotoxins. They are alternate water supply 
source, to adjust intake depth and water treatment. 
Chlorination, besides cell breaking, has the potential to 
disinfect the water and potassium permanganate (KMnO4) 
has been confirmed to be effective in removing Microcystis 
cells with no release of toxin. It has been recommended that 
powdered activated carbon (PAC) also can be used to 
remove any toxin. Other than these strategies, the standard 
drinking water treatment processes (coagulation, 
flocculation, sedimentation and filtration), have also proved 
to be effective in removing intracellular cyanotoxins. 
Coagulation, flocculation and dissolved air flotation (DAF), 
are however reported, more effective than sedimentation 
(United States Environmental Protection Agency, 2012; 
Westrick et al., 2010) [68, 71]. Microfiltration and 
ultrafiltration are highly effective for removing intact 
cyanobacterial cells. When a bloom occurs and cells are 
carried through the filters, backwash should be conducted 
more frequently to reduce the risk of toxin release into the 
water (Falconer, 2005) [29].  

 

Table 2: Exposure routes and health effects 
 

Exposure 
routes 

Genera Health effects 

Skin contact 

Oscillatoria 
Lyngbya 

Microcystis 
Nodularia 

Aphanizomenon 
Anabaena 

Gloeotrichia 

Rashes, blisters, 
Allergicreations: hayfever, 
asthma, conjonctivitis, ear 

and eye irritation, eye 
inflammation 

Inhalation 
Trichodesmium 

Lyngbya 
Anabaena 

Liver lesions 

Haemodialysis 

Aphanizomenon 
Anabaena 

Microcystis 
Oscillatoria 

Anabaenopsis 

Tender hepatomegaly, 
gastrointestinal bleeding 
sepsis and cardiovascular 

problems 

Ingestion 

Cylindrospermo
spsis 

Microcystis 
Anabaena 

Oscillatoria 
Lyngbya 

Plankthotrix 
Rhaphidiopsis 

Umezakia 

Gastroenteritis, 
hepatoenteritis, vomiting, 
headache, abdominal pain, 

tender hepatomegaly, 
lethargy, diarrhaea, acidosis, 
injury to the liver, kidneys 

lungs, adrenals and intestine 

 
Conclusion 
The occurrence of cyanoblooms is now-a-days much better 
documented. Among the major impacts we may point out the 
decrease in water transparency and oxygen levels, the 
production of off-flavours and the production of toxins. 
Among the most common toxins, microcystins, anatoxin-a, 
and saxitoxins are the most common in the world. The effect 
of these toxins depends on the route of exposure: skin 
contact (dermal route), inhalation, haemodialysis and 
ingestion (oral route). Such effects can occur within minutes 
to days or weeks after exposure. In some cases, liver failure, 
seizures, respiratory arrest, growth of tumors and cancer may 
be occur. Death cases are also noted in case of dog, bird and 
livestock. The marine cyanobacteria toxins cause many 
diseases including paralytic shellfish poisoning (PSP), 
ciguatera fish poisoning (CFP), azaspiracid poisoning (AZP), 
neurotoxic shellfish poisoning (NSP) and diarrheic shellfish 
poisoning (DSP). 
Many procedures may be adopted for treatment of drinking 
water. However, the best method is protection of water 
source. 
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