Application of biopolymer in postharvest shelf life enhancement of strawberry fruit

Muhammad Farooq, Amir Gull and Gulzar Ahmad Nayik

Abstract
The objective of this study was to examine how biopolymer coatings at concentrations (1, 2% w/v) incorporated with anti-browning agents (0.75% w/v) influenced the characteristics of strawberry fruit during refrigeration storage. The addition of biopolymer coatings increased the firmness, reduced browning index compared to the control. Emulsion coated samples also showed significant (p≤0.05) increase in DPPH radical scavenging activity compared to the control sample. The present study confirmed that biopolymer coatings could be used to extend the postharvest shelf life of fruits especially strawberry.

Keywords: strawberry, coatings, shelf life, biopolymer, DPPH

Introduction
Strawberries (Fragaria x ananassa Duchesne) being most popular non-climacteric fruit; characterized by its desirable flavor and taste is usually consumed either fresh or in processed form. Being potent sources of bioactive compounds such as vitamin C, vitamin E, carotene and anthocyanin’s these are known to have protective role against reactive oxygen groups, therefore showed beneficial effect on the consumer health by reducing variegated cancer forms (Van De Velde et al., 2013) [12]. Strawberry fruits are having short shelf life due to its susceptibility to mechanical injury, physiological disorders and activity of enzymes such as polyphenol oxidase and peroxidase, as this cause browning reaction and reduce polyphenol content (Vu et al., 2011) [13]. Several techniques such as low temperature, controlled and modified atmosphere packaging have been developed for fruit preservation, but these always have certain limitations (Sallato et al., 2007) [11]. Usually consumers demand food products with improved quality without addition of chemical preservatives. Hence, there is need to explore effective measures for maintaining nutritional quality and improving shelf life of fruits. This could be made possible by using environment friendly technology such as edible coatings as these have potential to prolong storage life by creating semi permeable barrier around the fruit, therefore does not allow the transfer of gases and moisture (Martinez-Romero et al., 2006; Baldwin, 2001) [7, 8]. To extend shelf life of fruits several polysaccharide types can be used as edible coating by controlling biochemical processes (Oms-Oliu et al., 2008; Rojas-Grau et al., 2007) [9, 10]. Carboxy methyl cellulose received significant attention as it is extensively been used to delay fruit ripening, reduce quality loss in several fresh fruits such as pears and cherries (Zhou et al., 2008; Yaman and Bayoindirli, 2001) [16, 14]. Alginate is derived from marine brown algae (Phaeophyceae) also is finding significant use in the food industry as texturizing agent (Mancini & McHugh, 2000) [6]. By incorporating active carriers such as antioxidant and antimicrobial agents in biopolymer coatings provide novel way to improve the shelf-life of fruits (Cagri et al. 2004) [2]. Keeping in view the benefits of biopolymer the present work was conducted to study the effect of emulsion coatings loaded with active carrier anti browning agents on quality parameters of strawberry fruit during refrigerated storage.

Material and Methods
Ripe strawberries were supplied by a local distributor and kept in refrigeration condition (4°C) prior to processing. Food grade sodium alginate and carboxy methyl cellulose (Sigma-Aldrich and HiMedia) were the carbohydrate biopolymers used to prepare the coating.
formulations. Calcium chloride was used to induce a crosslinking reaction and acetyl cysteine were the added anti browning agent. All other reagents used were of analytical grade.

Emulsion preparation

Emulsions were prepared by dissolving biopolymers, sodium alginate and car boxy methyl cellulose at concentrations (1% and 2% w/v) in distilled water heated at 70°C, while stirring until complete dissolution. For biopolymers cross linking calcium chloride solution (2% w/v) containing N-acetyl cysteine at 1% (w/v) was prepared. The mixture was blended using homogenizer for 20 min.

Strawberry fruits were selected based on uniformity of colour, size and deprivation of fungal infection. Fruits were washed with sodium hypochlorite solution, rinsed with tap water and drained. Emulsions were further used as film-forming solutions to form coating onto fruit surface. Fruit were then dipped in emulsions for few minutes at room temperature. Fruits dipped in distilled water are designed as control. Uncoated or coated fruits were placed in polypropylene trays. The fruits were analyzed up to 8 days of storage except the control fruit which was analyzed for up to 6 days only as thereafter they began to decompose.

Physicochemical Properties

Decay percentage was calculated by using the method of (El-Anany et al. 2009) [3]. Browning index was measured by using the method of (Olivas et al., 2007). Firmness was measured by using texture analyzer (TA-XT2., Stable Micro systems, UK). The maximum force (N) required for the fixed penetration depth (5 mm) was recorded as firmness. Measurements were done in triplicate.

The DPPH radical scavenging activity of strawberry juice was measured according to the DPPH method (Matthus, 2002) [8] with slight modifications. DPPH scavenged (%) was calculated as:

\[
AA\ (%\ inhibition) = \frac{\text{Absorbance of control} - \text{Absorbance of sample}}{\text{Absorbance of control}} \times 100
\]

Statistical analysis

The experiments were carried out in triplicates. The significant differences were obtained by one -way analysis of variance (ANOVA) followed by Duncan’s multiple range test \((p<0.05)\) using Statistica V.7.

Results and Discussion

Decay percentage

From the results it was noticed that the decay percentage increased with in all treatments with storage. However, coatings significantly reduced the decay percentage compared to the control (Fig.1). Researcher (Hernandez-Munoz et al., 2008) [4] reported no sign of fungal decay for strawberry fruit coated with 1.5% chitosan during the storage period.

Browning index

Browning index is an indicator of brown color intensity. Darkening is main issue particularly in fruits. Fig. 2 shows changes in browning index of coated and uncoated strawberry fruits during storage period of eight days. Results verified that from the 4th storage day, there was a significant reduction \((p \leq 0.05)\) of browning index in fruits coated with nano biopolymer coatings compared to the control sample (Fig.2). It was concluded that nano biopolymer coatings incorporated with anti-browning agent were efficient to avoid enzymatic darkening of the tissues.

Statistical analysis

Results of flesh firmness of coated and uncoated strawberry fruit during storage are shown in (Fig. 3). Firmness is regarded as most desirable quality attribute. Significant differences \((P \leq 0.05)\) were observed in firmness of coated and uncoated strawberry fruit during storage. Control sample showed sharp decrease in firmness from 13 N-9 N till 6 th day. Moreover it was noticed that nano-coated samples retained firmness during the storage. This may be due to addition of calcium salts which induced biopolymer cross-linking prevents cell wall degradation, thus enhanced fruit firmness.
Effect of chitosan coating combined with alginate are most suitable coating substance for extending shelf life of strawberries. Postharvest Biology and Technology 2001;35:120-131.

Yaman O, Bayoindirli L. Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT: Food Science and Technology 2001;35:146-150.

Van De Velde F, Tarola AM, Guemes D, Pirovani ME. Bioactive compounds and antioxidant capacity of Camarosa and Selva strawberries (Fragaria x ananassa Duch.). Foods 2013;2:120-131.

Vu KD, Hollingsworth RG, Leroux E, Salmieri S, Lacroix M. Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Research International 2011;44:198-203.

Yaman O, Bayoindirli L. Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT: Food Science and Technology 2001;35:146-150.

References