

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2016; 2(4): 344-350 www.allresearchjournal.com Received: 07-03-2016 Accepted: 04-04-2016

L Pandiselvi

PG and Research Department of Mathematics, V. O. Chidambaram College, Tuticorin-628008, Tamilnadu, India.

A Nellai Murugan

PG and Research Department of Mathematics, V. O. Chidambaram College, Tuticorin-628008, Tamilnadu, India.

S Navaneethakrishnan

PG and Research Department of Mathematics, V. O. Chidambaram College, Tuticorin-628008, Tamilnadu, India.

Correspondence L Pandiselvi

PG and Research Department of Mathematics, V. O. Chidambaram College, Tuticorin-628008, Tamilnadu, India.

V₄ Cordial Labeling of Fan and Globe

L Pandiselvi, A Nellai Murugan and, S Navaneethakrishnan

Abstract

Let < A, *> be any abelian group. A graph G = (V(G), E(G)) is said to be A-cordial if there is a mapping $f: V(G) \to A$ which satisfies the following two conditions with each edgee= uv is labeled as f(u)*f(v).

 $(i)|v_f(a) - v_f(b)| \le 1, \forall a,b \in A$

(ii) $|e_f(a) - e_f(b)| \le 1, \forall a,b \in A$

where $v_f(a)$ = the number of vertices with label a.

 $v_f(b)$ = the number of vertices with label b.

 $e_f(a)$ = the number of edges with label a.

 $e_f(b)$ = the number of edges with label b.

We note that if $A = \langle V_4, * \rangle$ is a multiplicative group. Then the labeling is known as V_4 Cordial Labeling. A graph is called a V_4 Cordial graph if it admits a V_4 Cordial Labeling. In this paper, we proved that $F_n = P_n + K_1$ and Globe (Gl(n)) are V_4 Cordial graphs.

AMS Mathematics subject classification 2010:05C78

Keywords: Cordial labeling, V4Cordial Labeling and V4Cordial Graph

1. Introduction

By a graph, we mean a finite undirected graph without loops or multiple edges. For graph theoretic terminology, we referred Harary^[4]. For labeling of graphs, we referred Gallian^[1]. A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge uv a label depending on the vertex labels of u and v.

A graph G is said to be labeled if the n vertices are distinguished from one another by symbols such as $v_1, v_2,...,v_n$. In a labeling of a particular type, the vertices are assigned values from a given set, the edged have a prescribed induced labeling must satisfy certain properties. The concept of graceful labeling was introduced by Rosa^[3] in 1967 and subsequently by Golomb^[2].

2. Preliminaries

Definition 2.1: Let G = (V,E) be a simple graph. Let $f:V(G) \rightarrow \{0,1\}$ and for each edge uv, assign the label |f(u) - f(v)|. f is called a cordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by atmost 1 and also the number of edges labeled 0 and the the number of edges labeled 1 differ by atmost 1. A graph is called Cordial if it has a cordial labeling.

Definition 2.2: Let $\langle A, * \rangle$ be any abelian group. A graph G = (V(G), E(G)) is said to be A-cordial if there is a mapping $f: V(G) \to A$ which satisfies the following two conditions with each edge

e=uv is labeled as f(u)*f(v).

 $(i)|v_f(a) - v_f(b)| \le 1, \forall a,b \in A$

 $(ii)|e_f(a) - e_f(b)| \le 1, \forall a,b \in A$

where $v_f(a)$ = the number of vertices with label a.

 $v_f(b)$ = the number of vertices with label b.

 $e_f(a)$ = the number of edges with label a.

 $e_f(b)$ = the number of edges with label b.

We note that if $A = \langle V_4, * \rangle$ is a multiplicative group. Then the labeling is known as

V4 Cordial Labeling. A graph is called a V4 Cordial graph if it admits a V4 Cordial Labeling.

Definition 2.3

 $\operatorname{Fan} F_n = P_n + K_1$ is obtained from the Path P_n by joining each vertex of P_n to a vertex u.

Globe is a graph obtained from two isolated vertex are joined by n paths of length 2. It is denoted by (Gl(n)).

3. Main Results

Theorem 3.1

 $F_n = P_n + K_1$ is a V₄Cordial graph.

Proof:LetV₄= $\{1,-1,i,-i\}$. Let $V(P_n + K_1) = \{u, u_i : 1 \le i \le n\}$. Let $E(P_n + K_1) = \{(u u_i) : 1 \le i \le n\} \cup \{(u_i u_{i+1}) : 1 \le i \le n-1\}.$ Define $f:V(P_n + K_1) \rightarrow V_4$ The vertex labeling are, Let f(u)=1,

$$\mathbf{f}(u_i) = \begin{cases} 1 \ if \ i \ \equiv \ 0.4 (mod \ 8) \\ -i \ if \ i \ \equiv \ 1.6 (mod \ 8) \\ i \ if \ i \ \equiv \ 2.5 (mod \ 8) \\ -1 \ if \ i \ \equiv \ 3.7 (mod \ 8) \end{cases}, 1 \le i \le n$$

The edge labeling are,

$$f(uu_i) = \begin{cases} 1 \ if \ i \equiv 0.4 (mod \ 8) \\ -i \ if \ i \equiv 1.6 (mod \ 8) \\ i \ if \ i \equiv 2.5 (mod \ 8) \\ -1 \ if \ i \equiv 3.7 (mod \ 8) \end{cases}, 1 \le i \le n$$

$$f(u_{i}u_{i+1}) = \begin{cases} -i \ if \ i \ \equiv \ 0,2 (mod \ 8) \\ 1 \ if \ i \ \equiv \ 1,5 (mod \ 8) \\ -1 \ if \ i \ \equiv \ 3,7 (mod \ 8) \end{cases}, \ 1 \le i \le n-1 \\ i \ if \ i \ \equiv \ 4,6 (mod \ 8) \end{cases}$$

Vertex Conditions

(i)
$$v_f(1) = \frac{n}{4} + 1$$
 and $v_f(i) = v_f(-i) = v_f(-1) = \frac{n}{4}$, when $n \equiv 0,4 \pmod{8}$
(ii) $v_f(1) = v_f(-i) = \frac{n-1}{4} + 1$ and $v_f(i) = v_f(-1) = \frac{n-1}{4}$, when $n \equiv 1 \pmod{8}$
(iii) $v_f(1) = v_f(i) = v_f(-i) = \frac{n-2}{4} + 1$ and $v_f(-1) = \frac{n-2}{4}$, when $n \equiv 2,6 \pmod{8}$
(iv) $v_f(1) = v_f(i) = v_f(-i) = v_f(-1) = \frac{n+1}{4}$, when $n \equiv 3,7 \pmod{8}$
(v) $v_f(1) = v_f(i) = \frac{n-1}{4} + 1$, and $v_f(-i) = v_f(-1) = \frac{n-1}{4}$, when $n \equiv 5 \pmod{8}$
Hence, it satisfies the condition of $|v_f(a) - v_f(b)| \le 1$, $\forall a,b \in V_4$

Edge Conditions

Eage Conditions

(i)
$$e_f(1) = e_f(i) = e_f(-1) = \frac{n}{2}$$
, and $e_f(-i) = \frac{n-2}{2}$, when $n \equiv 0 \pmod{8}$

(ii) $e_f(1) = e_f(-1) = e_f(i) = \frac{n-1}{2}$ and $e_f(-i) = \frac{n+1}{2}$, when $n \equiv 1 \pmod{8}$

(iii) $e_f(1) = e_f(-i) = e_f(i) = \frac{n}{2}$ and $e_f(-1) = \frac{n-2}{2}$, when $n \equiv 2,6 \pmod{8}$

(iv) $e_f(1) = e_f(i) = e_f(-1) = \frac{n-1}{2}$ and $e_f(-i) = \frac{n+1}{2}$, when $n \equiv 3 \pmod{8}$

(v) $e_f(1) = e_f(-i) = e_f(-1) = \frac{n-1}{2}$ and $e_f(i) = \frac{n+1}{2}$, when $n \equiv 5,7 \pmod{8}$

Hence, it satisfies the condition of $|e_f(a) - e_f(b)| \le 1$, \forall a,b \in V₄

Hence, $F_n = P_n + K_1$ is a V₄Cordial Graph.

For example, the V₄Cordial Labeling of P_8 , P_9 , P_6 , P_{11} , P_{13} and P_7 is shown in below figure 3.21-3.27.

whenn $\equiv 0.4 \pmod{8}$

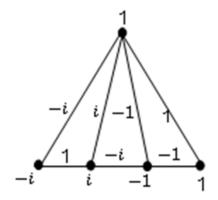


Fig3.21

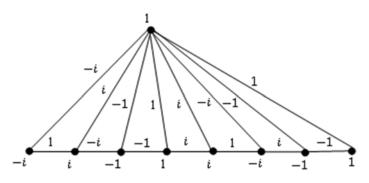


Fig 3.22

whenn $\equiv 1 \pmod{8}$

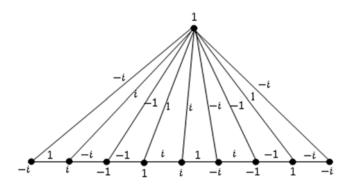


Fig 3.23

whenn≡ 2,6 (mod 8)

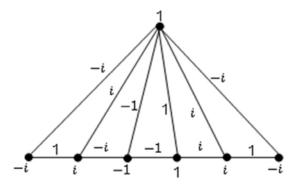


Fig3.24

whenn $\equiv 3.7 \pmod{8}$

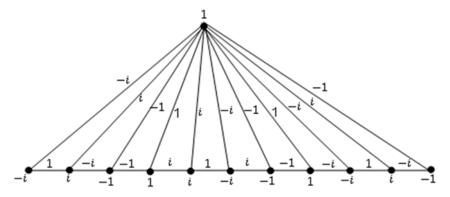


Fig 3.25

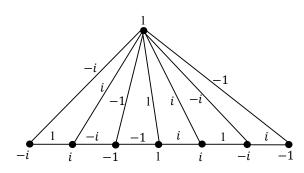


Fig 3.26

whenn $\equiv 5 \pmod{8}$

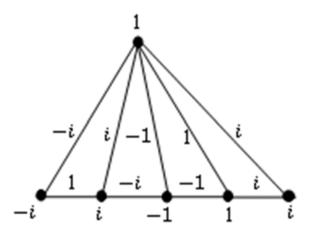


Fig3.27

Theorem 3.3

Globe (Gl(n)) is a is a V₄ Cordial graph,when n \equiv 0,1,3(mod 4). **Proof:**Let V₄= {1,-1, i,-i}. Let V(Gl(n)) ={ $u, \ v, w_i \colon 1 \le i \le n$ }. Let E (Gl(n)) = { $(uw_i) \colon 1 \le i \le n$ } $\cup \{(vw_i) \colon 1 \le i \le n\}$. Define f: V(Gl(n)) \rightarrow V₄.

Case(I)

When $n\equiv 0 \pmod{4}$

The vertex labeling are, Let f(u) = 1, f(v) = -1

$$\mathbf{f}(w_i) = \begin{cases} 1 \ if \ i \equiv 0 (mod \ 4) \\ -1 \ if \ i \equiv 1 (mod \ 4) \\ i \ if \ i \equiv 2 (mod \ 4) \\ -i \ if \ i \equiv 3 (mod \ 4) \end{cases}, 1 \leq i \leq n$$

The edge labeling are,

$$f(uw_i) = \begin{cases} 1 \ if \ i \equiv 0 (mod \ 4) \\ -1 \ if \ i \equiv 1 (mod \ 4) \\ i \ if \ i \equiv 2 (mod \ 4) \\ -i \ if \ i \equiv 3 (mod \ 4) \end{cases}, 1 \le i \le n$$

$$f(vw_i) = \begin{cases} -1 \ if \ i \equiv 0 (mod \ 4) \\ 1 \ if \ i \equiv 1 (mod \ 4) \\ -i \ if \ i \equiv 2 (mod \ 4) \end{cases}, 1 \le i \le n$$

$$i \ if \ i \equiv 3 (mod \ 4)$$

Vertex Conditions

(i)
$$v_f(1) = v_f(-1) = \left[\frac{n}{4}\right] + 1$$
 and $v_f(i) = v_f(-i) = \left[\frac{n}{4}\right]$

Hence, it satisfies the condition of $|v_f(a) - v_f(b)| \le 1, \forall a,b \in V_4$

Edge Conditions

(i)
$$e_f(1) = e_f(i) = e_f(-1) = e_f(-i) = \frac{n}{2}$$

(i) $e_f(1) = e_f(i) = e_f(-1) = e_f(-i) = \frac{n}{2}$ Hence, it satisfies the condition of $|e_f(a) - e_f(b)| \le 1$, \forall a,b \in V₄

Hence, (Gl(n)) is a V₄Cordial Graph.

For example, the V₄Cordial Labeling of (Gl(n)) is shown in below figure 3.41

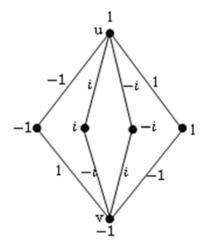


Fig3.41

Case(II)

when $n \equiv 1 \pmod{4}$

The vertex labeling are, Let f(u) = 1, f(v) = i

$$\mathbf{f}(w_i) = \begin{cases} 1 \ if \ i \ \equiv \ 0 (mod \ 4) \\ -1 \ if \ i \ \equiv \ 1 (mod \ 4) \\ i \ if \ i \ \equiv \ 2 (mod \ 4) \\ -i \ if \ i \ \equiv \ 3 (mod \ 4) \end{cases}, 1 \leq i \leq n$$

The edge labeling are,

$$f(uw_i) = \begin{cases} 1 & \text{if } i \equiv 0 \pmod{4} \\ -1 & \text{if } i \equiv 1 \pmod{4} \\ & \text{i if } i \equiv 2 \pmod{4} \\ -i & \text{if } i \equiv 3 \pmod{4} \end{cases}, 1 \le i \le n$$

$$f(vw_i) = \begin{cases} i \text{ if } i \equiv 0 \pmod{4} \\ -i \text{ if } i \equiv 1 \pmod{4} \\ -1 \text{ if } i \equiv 2 \pmod{4}, 1 \leq i \leq n \\ 1 \text{ if } i \equiv 3 \pmod{4} \end{cases}$$

Vertex Conditions

(i)
$$v_f(1) = v_f(-1) = v_f(i) = [\frac{n}{4}] + 1$$
 and $v_f(-i) = [\frac{n}{4}]$

Hence, it satisfies the condition of $|v_f(a) - v_f(b)| \le 1, \forall a,b \in V_4$

Edge Conditions

(i)
$$e_f(1) = e_f(i) = [\frac{n}{2}]$$
 and $e_f(-1) = e_f(-i) = [\frac{n}{2}] + 1$

Hence, it satisfies the condition of $\left| e_f(a) - e_f(b) \right| \le 1, \forall a,b \in V_4$

Hence, (Gl(n)) is a V₄Cordial Graph.

For example, the V₄Cordial Labeling of (Gl(n)) is shown in below figure 3.42

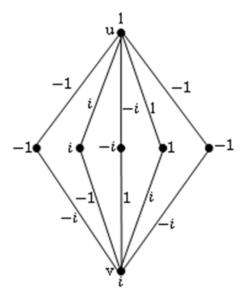


Fig3.42

Case(III)

when $n\equiv 3 \pmod{4}$

The vertex labeling are,

Let
$$f(u) = 1$$
, $f(v) = -i$ and $f(w_n) = 1$

$$f(w_i) = \begin{cases} 1 & \text{if } i \equiv 0 \pmod{4} \\ -1 & \text{if } i \equiv 1 \pmod{4} \\ & \text{iif } i \equiv 2 \pmod{4} \\ -i & \text{if } i \equiv 3 \pmod{4} \end{cases}, 1 \le i \le n - 1$$

The edge labeling are,

Let $f(uw_n)=1$ and $f(vw_n)=-i$

$$\mathbf{f}(uw_i) = \begin{cases} 1 \ if \ i \equiv 0 (mod \ 4) \\ -1 \ if \ i \equiv 1 (mod \ 4) \\ i \ if \ i \equiv 2 (mod \ 4) \\ -i \ if \ i \equiv 3 (mod \ 4) \end{cases}, 1 \leq i \leq n-1$$

$$f(vw_i) = \begin{cases} -i & \text{if } i \equiv 0 \pmod{4} \\ & \text{i if } i \equiv 1 \pmod{4} \\ & 1 & \text{if } i \equiv 2 \pmod{4} \\ & -1 & \text{if } i \equiv 3 \pmod{4} \end{cases}, 1 \le i \le n - 1$$

Vertex Conditions

(i)
$$v_f(1) = [\frac{n}{4}] + 2$$
 and $v_f(-i) = v_f(-1) = v_f(i) = [\frac{n}{4}] + 1$.

Hence, it satisfies the condition of $|v_f(a) - v_f(b)| \le 1, \forall a,b \in V_4$

Edge Conditions

(i)
$$e_f(1) = e_f(i) = [\frac{n}{2}] + 1$$
 and $e_f(-1) = e_f(-i) = [\frac{n}{2}]$

Hence, it satisfies the condition of $|e_f(a) - e_f(b)| \le 1$, \forall a,b \in V₄

Hence, (Gl(n)) is a V₄Cordial Graph.

For example, the V₄Cordial Labeling of (Gl(n)) is shown in below figure 3.43

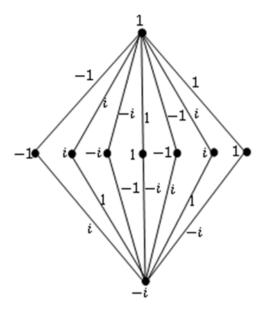


Fig 3.43

4. References

- 1. Gallian GJ. A Dynamic survey of graph labeling, The electronic journal of combinotorics 2009; 16:#DS6.
- Golomb SW. How to number a graph in graph Theory and computing, R.C. Read, ed., Academic Press, New York, 1972, 23-37.
- 3. Rosa On certain valuations of the vertices of a graph, Theory of graphs (International Symposium, Rome), July 1966.
- 4. Frank Harary. Graph Theory, Narosapublishing house Pvt. Ltd.,10th reprint 2001.
- 5. GrossJ, YeiienJ. Handbook of graph theory, CRC Press,2004.
- 6. Hovey M.A-cordial graphs, Discrete Math 1991; 93:183-194.
- 7. TaoR. On k-cordiality of cycles, crowns and wheels, Systems Sci 1998; 11:227-229.
- 8. Youssef MZ. On k-cordial labeling, Australas. J. Combin. 2009; 43:31-37.
- Modha MV, Kanani KK. Some new families of 5-cordial graphs, International Journal of Mathematics and Soft Computing 2015; 5(1):129-141.
- 10. Pandiselvi L, Navaneetha Krishnan S, Nellai Murugan A. Path Related V₄Cordial Graphs. International Journal of Recent Advances in Multidisciplinary Research. 2016; 03(02):1285-1294.
- 11. Pandiselvi L, Navaneetha Krishnan S, Nellai Murugan A. Bi-Star V₄ Cordial graphs International Journal of Advanced Science and Research 2016; 1(2):14-21.