

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2016; 2(6): 533-535 www.allresearchjournal.com Received: 19-04-2016 Accepted: 20-05-2016

R. Anbuselvi

Associate Professor of Mathematics, ADM College for women (Autonomous), Nagapattinam, Tamil Nadu, India.

K. Kannaki

Lecturer of Mathematics, Valivalam Desikar Polytechnic College, Nagapattinam, Tamil Nadu, India.

On ternary quadratic equation $x^2 + x y + y^2 = 12z^2$

R Anbuselvi and K Kannaki

Abstract

The Ternary quadratic Diophantine equation given by $x^2 + xy + y^2 = 12z^2$ is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

Keywords: Ternary, Quadratic, integral solutions, Polygonal Numbers.

1. Introduction

The ternary quadratic Diophantine equation offers an unlimited field for research because of their variely $^{[1, \ 3]}$. For an extensive review of various problems, one may refer $^{[1, \ 20]}$. This communication concerns with yet another interesting ternary quadratic equation $x^2 + xy + y^2 = 12z^2$ for determining its infinitely many non-zero distinct integral solutions. Also a few interesting relations among the solutions have been xhibited.

2. Notations used:

- t_{3,n}-Polygonal number of rank n with size m
- P³_n -Tetrahedral number of rank n
- P⁴_n -Square pyramidal number of rank n
- P⁵_n-Pentagonal pyramidal number of rank n

3. Method of Analysis

The Ternary Quadratic Diophantine Equation to be solved for its non-zero distinct integral solution is

$$x^2 + xy + y^2 = 12z^2 \tag{1}$$

Pattern - I

On substitution of linear transformations ($u \neq v \neq 0$)

$$x=u+3v$$
, $y=u-3v$ (2)
In (1) leads to $u^2+3v^2=4z^2$ (3)

The corresponding solutions of (3) is the form

$$\begin{array}{c} u = a^2 - 6ab - 3b^2 \\ v = a^2 + 2ab - 3b^2 \\ z = a^2 + 3b^2 \end{array}$$
 (4)

In view of (4), the solution of (1) can be written as

$$\begin{array}{c}
x=4a^2 - 12b^2 \\
y=6b^2 - 12ab - 2a^2 \\
z=a^2 + 3b^2
\end{array} \right\}$$
(5)

Instead of (2) using the transformations x=u-3v, y=u+3v in (1), we get again (3) only, Thus, the integer solutions of (1) are obtained as

$$\begin{array}{c}
x=-2a^2 - 12ab + 6b^2 \\
y=4a^2 - 12b^2 \\
z=a^2 + 3b^2
\end{array}$$
(6)

Correspondence R. Anbuselvi

Associate Professor of Mathematics, ADM College for women (Autonomous), Nagapattinam, Tamil Nadu, India. A few interesting properties observed are as follows:

I)
$$5 \times (2a, a) + y (2a, a) \equiv 0 \pmod{4}$$

II)
$$x(a, 1)-y(a, 1)-12t_{3,a} \equiv 0 \pmod{6}$$

III)
$$y(1, B)+2(1, B)-t(64, B)+t(34, B) \equiv 0 \pmod{15}$$

IV) x (A, 2)-
$$t_{202}$$
, A+ t_{198} , A = -24 (mod 26)

Each of the following expression represents a nasty numbers.

$$4 z (a, b) -x (a, b)$$

$$3 \{x (a, b) + 4z (a, b)\}$$

$$x(a, a) + 2y(a, a)$$

Pattern - II

Equation (3) can be written as

$$3v^2 - 3z^2 = z^2 - u^2$$

$$3(v + z)(v - z) = (z + u)z - u$$

Four different choices of solution obtained are as follows:

Choice I

$$X = 2A^2 - 6B^2 + 12AB$$

$$Y = 12B^2 - 4A^2$$

$$Z = A^2 + 3B^2$$

A few interesting properties observed are as follows.

I)
$$x(1, B) + 12t_{3, B} \equiv 2 \pmod{18}$$

II)
$$x(5, B) + 12t^{3, B} \equiv 16 \pmod{66}$$

III)
$$x (10, B) + 12t_{3, B} \equiv 74 \pmod{126}$$

IV)
$$x (A, 2) - 4t_{3, A} \equiv -2 \pmod{22}$$

V)
$$x (A, 4) - 4t_{3, A} \equiv -4 \pmod{46}$$

VI)
$$2x (A, A+1) + y (A, A+1) - 48t_{3, A} \equiv 0$$

VII)
$$2x (A, A (A+1)) + y (A, A (A+1)) - 48P_A^5 \equiv 0$$

VIII)
$$2x (A, (A +1) (A+2)) + y (A, (A+1) (A+2)) - 144P_3^A \equiv 0$$

IX) Each of the following expression represents a nasty numbers

(a)
$$2x (A, B) + y (A, B)$$

(b)
$$y(A, B) + 4z(A, B)$$

(c)
$$y (3B, B)$$

Choice II

$$x = -4A^2 + 12B^2$$

$$y = 2A^2 - 6B^2 - 12AB$$

$$z = A^2 + 3B^2$$

Choice III

$$X = 2A^2 - 6B^2 + 12AB$$

$$Y = 12B^2 - 4A^2$$

$$Z = -A^2 - 3B^2$$

Choice IV

$$X = 2A^2 - 6B^2 - 12AB$$

$$Y = -4A^2 + 12B^2$$

$$z = -3B^2 - A^2$$

Pattern - III

Equation (3) can be written as

$$u^2 + 3v^2 = 4z^2 1$$
 (7)

Assume that
$$z=a^2-3b^2$$
 (8)

Write 1 as
$$1 = ((1+i\sqrt{3})(1-i\sqrt{3}))$$
(9)

Use (8) and (9) in (7) and employing the method of factorization. Define

$$u + i\sqrt{3} v = (1 + i\sqrt{3}) (1 + i\sqrt{3}) (a + i\sqrt{3} b)^2$$

2 (10)

$$u = -a^2 + 3b^2 - 6ab (11)$$

$$v = a^2 - 3b^2 - 2ab (12)$$

Substituting (11) and (12) in (2), the corresponding integer solution of (1) are given by

$$\begin{array}{c}
 x = 2a^2 - 6b^2 - 12ab \\
 y = -4a^2 + 12b^2 \\
 z = a^2 + 3b^2
 \end{array}$$
(13)

A few interesting properties observed are as follows.

I)
$$x(1, b) + 12t_{3, b} \equiv 2 \pmod{6}$$

II)
$$x(2, b) + 12t_{3, b} \equiv 8 \pmod{18}$$

III)
$$x(3, b) + 12t_{3, b} \equiv 18 \pmod{30}$$

IV)
$$x(4, b) + 12t_{3, b} \equiv 22 \pmod{42}$$

$$(x_{0}, 1) - 4t_{3, a} \equiv -6 \pmod{14}$$

VI)
$$x (a, 2) - 4t_{3, a} \equiv -24 \pmod{26}$$

VII) x (a, 3) -
$$4t_{3, a} \equiv -16 \pmod{38}$$

VIII)x (a, 4) - $4t_{3, a} \equiv -46 \pmod{50}$

IX) Each of the following expression represents a nasty numbers

- (a) x (a, a) 2y (a, a)
- (b) y(a, b) + 4z(a, b)
- (c) 2x(a, b) + y(a, b)
- (d) x (a, a) -2z (a, a)

Pattern - IV

Again, Equation (3) can be written as

$$u^2 + 3v^2 = 4z^2 * 1 (14)$$

Assume that
$$z=a^2+3b^2$$
 (15)

Write 1 as
$$1 = (1 + 4i\sqrt{3})(1 - 4i\sqrt{3})$$
(16)

Use (16) and (15) in (14) and employing the method of factorization. Define

$$u+i\sqrt{3}v = (1+i\sqrt{3}) \frac{(1+4i\sqrt{3})(a+i\sqrt{3}b)^{2}}{7}$$
(17)

Equating the real and imaginary parts in (17)

$$u = 1/7 (33b^2 - 11a^2 - 30ab)$$
 (18)

$$v = 1/7 (5a^2 - 15b^2 - 22ab)$$
 (19)

Our interest is to obtain the integer solutions, so that the values of u and v are integers for suitable choices of the parameters a and b.

put a =
$$7 \text{ A}$$
, b = 7 B

$$u=231B^2-77A^2-210AB$$
 (20)

$$v=35A^2-154AB-105B^2$$
 (21)

$$z=49A^2+147B^2 (22)$$

Substituting (20) and (21) in (2), the corresponding integer solutions of (1) are given by

$$\begin{array}{c}
x=28A^2-84B^2-672AB \\
y=546B^2-182A^2-252AB \\
z=49A^2+147B^2
\end{array}$$
(23)

The equation (23) represents non-zero distinct integral solution of (1) on two parameters.

A few interesting properties observed are as follows.

- I) $x (A,1)-56t_{3,A} \equiv -84 \pmod{700}$
- II) $x (A,3)-56t_{3,A} \equiv -756 \pmod{2044}$

 $\begin{array}{ll} \mathrm{III)} & x\ (A,5)\text{-}56t_{3,A} \equiv -2100\ (mod\ 3388) \\ \mathrm{IV)} & x\ (A,6)\text{-}56t_{3,A} \equiv -3024\ (mod\ 4032) \\ \mathrm{V)} & x\ (A,9)\text{-}56t_{3,A} \equiv -756\ (mod\ 6048) \\ \mathrm{VI)} & y\ (1,B)+504t_{3,B} \equiv -182\ (mod\ 798) \\ \mathrm{VII)} & y\ (2,B)+1008t_{3,B} \equiv -728\ (mod\ 1050) \\ \mathrm{VIII)} & y\ (4,B)+2016t_{3,B} \equiv -1358\ (mod\ 1554) \\ \mathrm{IX)} & y\ (7,B)+3528t_{3,B} \equiv -1988\ (mod\ 2310) \\ x) & y\ (8,B)-1092t_{3,B} \equiv -1392\ (mod\ 2564) \\ \end{array}$

Pattern - V

Equation (3) may be equivalent to
$$u^2+3v^2=(2z)^2 \tag{24}$$
 Which is satisfied by
$$u=3p^2-q^2 \tag{25}$$

$$v=2pq \tag{26}$$

$$z=1/2\ (3p^2+q^2) \tag{27}$$

Our interest is to obtain the integer solutions, so that the values of z are integers for suitable choices of the parameters p and q.

put p = 2 A, q = 2 B in (25), (26) and (27) we get
$$u=12A^2-4B^2$$
 (28) $v=8AB$ (29) $z=6A^2+2B^2$ (30)

Substituting (28) and (29) in (2), the corresponding integer solutions of (1) are given by $x=12.4^{\circ}$ $4R^{\circ}$ 124.4R

 $x=12A^2-4B^2+24AB$ $y=12A^2-4B^2-24AB$ $z=6A^2+2B^2$

A few interesting properties observed are as follows.

- (i) $x (A,4)-24t_{3,A} \equiv -64 \pmod{84}$
- (ii) $x (A,7)-24t_{3,A} \equiv -40 \pmod{156}$
- (iii) y $(1,B)+8t_{3,B} \equiv 12 \pmod{20}$
- (iv) y $(3,B)+8t_{3,B} \equiv 40 \pmod{68}$
- (v) $x (A,B)-y (A,B)-48 AB \equiv 0$
- (vi) x (A,A+1)-y (A,A+1)-96 $t_{3,A} \equiv 0$
- (vii)x (A,A (A+1))-y (A,A (A+1))-96 $P_A^5 \equiv 0$
- (viii) x (A,(A+1)(A+2))-y (A,(A+1) (A+2))-288 $P_3^A \equiv 0$

4 Conclusion

In this paper we have presented five different patterns of non-zero distinct integer solutions of the ternary quadratic equation given by $x^2 + xy + y^2 = 12z^2$ To conclude, one may search for other patterns of solutions and their corresponding properties.

5 Reference

- 1. Dickson LE. History of Theory of numbers, Chelsea Publishing Company, New York, 1952, 2.
- 2. Mordell LJ. Diophantine Equations, Academic Press, London, 1969.
- 3. Andre Weil, Number Theory. An approach through history: from hammurapi to legendre / Andre weil: Boston (Birkhauser Boston, 1983.
- Nigel Smart P. The algorithmic Resolutions of Diophantine equations, Cambridge University press, 1999.
- 5. Smith DE. History of mathematics Dover publications, New York, 1953, I(II).
- 6. Gopalan MA. Note on the Diophantine equation $x^2+axy+by^2=z^2$ Acta Ciencia Indica 2000; XXVIM(2):105-106.

- 7. Gopalan MA. Note on the Diophantine equation $x^2+xy+y^2=3z^2$ Acta Ciencia Indica 2000; XXVIM(3):265-266.
- 8. Gopalan MA, Ganapathy R, Srikanth R. On the Diophantine equation $z^2 = Ax^2 + By^2$, Pure and Applied Mathematical Sciences 2000; LII(1-2):15-17.
- 9. Gopalan MA, Anbuselvi R. On Ternary Quadratic Homogeneous Diophantine equation $x^2+Pxy+y^2=z^2$, Bulletin of pure and Applied Sciences 2005; 24E(2):405-408.
- 10. Gopalan MA, Vidhyalakshmi S, Krishnamoorthy A. Integral solutions Ternary Quadratic ax²+by²=c(a+b)z², Bulletin of pure and Applied Sciences 2005; 24E(2):443-446.
- 11. Gopalan MA, Vidhyalakshmi S, Devibala, Integral solutions of $ka(x^2+y^2+bxy=4ka^2z^2)$, Bulletin of pure and Applied Sciences 2006; 25E(2):401-406.
- 12. Gopalan MA, Vidhyalakshmi S, Devibala, Integral solutions of $7x^2+8y^2=9z^2$ Pure and Applied Mathematika Sciences 2007; LXVI(1-2):83-86.
- 13. Gopalan MA, Vidhyalakshmi S. An observation on kax²+by²= cz², Acta Cienica Indica 2007; XXXIIIM(1):97-99.
- 14. Gopala MA, Manjusomanath, Vanitha N. Integral solutions of $kxy = m(x+y) = z^2$, Acta Cienica Indica 2007; XXXIIIM(4):1287-1290.
- 15. Gopalan MA, Kaliga Rani J. Observation on the Diophantine Equation $y^2 = Dx^2 + y^2$, Impact J Sci Tech. 2008; 2(2):91-95.
- 16. Gopalan MA, Pondichelvi V. On Ternary Quadratic Equation $x^2+y^2=z^2+1$, Impact J. Sci Tech. 2008; 2(2)5:5-58.
- 17. Gopalan MA, Gnanam A. Pythagorean triangles and special polygonal numbers, International Journal of Mathematical Science. 2010; 9(1-2):211-215.
- 18. Gopalan MA, Vijayasankar A. Observations on a Pythagorean Problem, Acta Cienica Indica 2010; XXXVIM(4):517-520.
- 19. Gopalan MA, Pandichelvi V. Integral Solutions of Ternary Quadratic Equation z(X-Y) =4XY Impact. J Sci Tech. 2011; 5(1):01-06.
- 20. Anbuselvi R, Kannaki K. On ternary Quadratic Equation $11x^2+3y^2=14$ z^2 2016; 5(2):65-68.
- 21. Dickson LE. Theory of numbers, Diophantine analysis, New York, Dover, 2005, 2.
- 22. Mordeii LJ Diophantine Equations Academic Press, New York, 1969.
- 23. Carmichael RD, The Theory of numbers and Diophantine Analysis, New York, Dovers, 1959.