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Abstract 
The objectives of this study is to formulate a multiple fuzzy linear regression model using crisp 
input/output to investigate the relationship between explanatory and response variables to estimate the 
model parameters. For present study, fuzzy linear regression model proposed by Zadeh’sis used which 
is based on fuzzy linear function. Comparative study of fuzzy multiple regression model and 
conventional multiple regression model is done on the basis of coefficient of determination which is 
used as goodness of fit for both the models. Finally, a numerical example is provided for demonstration 
of the results. It is observed that the fuzzy multiple regression model is more suitable than the 
conventional multiple regression model resulting in higher coefficient of determination. 
 
Keywords: Fuzzy linear regression, SST, SSR, Coefficient of determination, least square method. 
 
1. Introduction 
Regression analysis has a widespread application in various fields, such as business, 
engineering, agriculture, and economics, to explain the statistical relationship between 
explanatory and response variables. The use of statistical linear regression is bounded by 
some assumption about the given data that is error terms are mutually independent and 
identical distributed. Statistical regression model can be applied only if the given data are 
distributed according to statistical model, and the relation between explanatory and response 
variables is crisp. However, in real life situations decision-making processes the data will be 
fuzzy in nature. For example, the observations are represented in linguistic terms, vagueness, 
such kinds of data the fuzzy regression model is suitable to construct the relationship 
between input and output variables in the fuzzy environment. 
The fuzzy linear regression model was first introduced by Tanaka et al. [1], by using linear 
programming problem to determine the regression coefficient as a fuzzy numbers. Later 
Tanaka [2], Tanaka and Watada [5], and Tanaka et al. [3] made some improvements. As pointed 
out by Redden and Woodall [5], their method is very sensitive to outliers. Moreover, the 
spread of the estimated response becomes wider as more observations are included in the 
model. The second approach developed by Diamond [6], which minimizes the total error 
some of square of the output is called the fuzzy least square method. On the basis of a 
possibilistic regression model. 
 
2. Literature Review 
Diamond [6] introduced the fuzzy regression model to minimize the sum of squares of 
differences for the centre of fuzzy of fuzzy numbers and the sum of squares of differences for 
spreads of fuzzy numbers. PierpaoloD'Urso, et al. [11]. Introduced new approach of fuzzy 
linear regression analysis. They had developed doubly linear adaptive fuzzy regression 
model, based on two linear models such as centre regression model and a spread regression 
model. The first one was explained the centre of the fuzzy observations, while the second 
one was for their spreads. They had observed that doubly linear adaptive fuzzy regression 
analysis had alternative methods for fuzzy linear regression analysis. Volker Krätschmer [12] 
developed new fuzzy linear regression models. He had generalized the type of single  
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Ordinary equation in linear regression models by incorporated 
the physical vagueness of the involved items in the form of 
fuzzy data for the variables. He had suggested that ordinary 
least-squares method was greater flexibility for modelling and 
estimation Yun-His, et al. [13], Developed hybrid fuzzy least-
squares regression. They were used weighted fuzzy-arithmetic 
mean and least-squares fitting criterion. They had compared 
hybrid regression with the ordinary regression and other fuzzy 
regression methods. They suggested that hybrid fuzzy 
regression model satisfied a limiting behaviour that the 
fuzziness decreases, the equations were similar to the results 
of the ordinary regression. Chiang Kao et al. [14], proposed 
two-stage fuzzy linear regression model. In first stage, the 
fuzzy observations was de-fuzzified so that the traditional 
least-squares method was applied to find a crisp regression 
line showed the general trend of the data. In the second stage, 
the error term of the fuzzy regression model was represents 
the fuzziness of the data andalso determined to given the 
regression model was best explanatory power for the data. 
Finally they suggested that two-stage method had better 
performance than the Kim–Bishu’s and Diamond fuzzy linear 
regression model. Hsien-Chung Wu [18] proposed fuzzy 
estimates of regression parameters with the help of 
“Resolution Identity”. He said that the fuzzy estimates was 
constructed from the alpha level least-squares estimates used 
the alpha level real-valued data. Finally he had developed two 
computational procedures to solve the optimization problems.  
Kyung. Kim, et al. [17]. Proposed fuzzy least absolute 
deviation method to construct fuzzy linear regression model 
with fuzzy input and fuzzy output. They had suggested that 
the fuzzy least absolute deviation method was more effective 
than the least square method used the in the fuzzy regression 
analysis. Rajan Alex [16] introduced fuzzy regression and 
fuzzy inference. He was applied the two kinds of information 
resources, quantitative and qualitative information and also 
used simultaneously in practical prediction. Finally he 
suggested that fuzzy regression and fuzzy inference had better 
performance than pure regression or pure inference model. 
Hye-Youngung, et al. [15], proposed rank transformation 
method. They investigated a method to obtain a predicted 
output with respect to a specific target value. They suggested 
that the rank transformation method in fuzzy regression model 
was better performs than the Chen and Hsuehand Diamond 
fuzzy regression models. Furkan Baseret et al. [20] applied 
hybrid fuzzy least squares regression analysis to predict future 
claim costs by used the concept of London Chain Ladder 
(LCL) method. They had suggested that the hybrid fuzzy 
least-squares regression model was taken both randomness 
and fuzziness type of uncertainty into a regression model. 
A.B Ubale, S.L Sananse [21] introduced brief research trends in 
application of fuzzy regression analysis in different field.  
 
3. Materials and Methods  
A regression Model that involves more than one explanatory 
or independent variables, called as multiple linear regression 
model. This model generalizes the simple linear regression in 
two ways. It allows the mean function E(y) to depend on more 
than one explanatory variables. 
Let y denotes the dependent (or study) variable that is linearly 
related to k independent (or explanatory) variables 
ଵܺ, ܺଶ, … . , ܺ௡ through the parameters ߚଵ, ,ଶߚ … ,  ௞ and weߚ

write 
	ݕ ൌ ଵܺߚଵ 	൅	ܺଶߚଶ ൅ ⋯൅ ܺ௞ߚ௞ ൅ ε      (1) 
This is called as the multiple linear regression model. The 
parameters ߚଵ, ,ଶߚ … ,  ௞ are the regression coefficientsߚ

associated with ଵܺ, ܺଶ, … . , ܺ௡ respectively and ε is the 
random error component reflecting the difference between the 
observed and fitted linear relationship.  
These n equations can be written as 

൮

ଵݕ
ଶݕ
⋮
௡ݕ

൲ ൌ ൮

ଵଵݔ ଵଶݔ … ଵ௞ݔ
ଶଵݔ ଶଶݔ … ଶ௞ݔ
⋮ ⋮ ⋮ ⋮
௡ଵݔ ௡ଶݔ … ௡௞ݔ

൲൮

଴ߚ
ଵߚ
⋮
௞ߚ

൲ ൅ ൮

ଵߝ
ଶߝ
⋮
௡ߝ

൲ 

Or 
	ݕ ൌ 	ߚܺ	 ൅ 	2ሻ)                ߝ	
whereݕ	 ൌ 	 ሺ	ݕଵ, ,ଶݕ . . . ,  ሻ′ is a n ×1 vector of n observation	௡ݕ
on study variable,  

ܺ ൌ ൮

ଵଵݔ ଵଶݔ … ଵ௞ݔ
ଶଵݔ ଶଶݔ … ଶ௞ݔ
⋮ ⋮ ⋮ ⋮
௡ଵݔ ௡ଶݔ … ௡௞ݔ

൲ 

is a n x k matrix of n observations on each of the k 
explanatory variables, ߚ	 ൌ 	 ሺ	ߚଵ, ,ଶߚ . . . ,  ሻ′ is a k x 1 vector	௡ߚ
of regression coefficients and ߝ	 ൌ 	 ሺ	ߝଵ, ,ଶߝ . . . ,  ሻ′ is a n x 1	௡ߝ
vector of random error components or disturbance term. 
If intercept term is present, take first column of X to be 
(1,1,…,1)’. So that 

ܺ ൌ ൮

1 ଵଵݔ ଵଶݔ … ଵ௞ݔ
1 ଶଵݔ ଶଶݔ … ଶ௞ݔ
⋮ ⋮ ⋮ ⋮ ⋮
1 ௡ଵݔ ௡ଶݔ … ௡௞ݔ

൲ 

In this case, there are (k – 1) explanatory variables and one 
intercept term. 
 
3.1 Least Squares Methods (LS) 
A general procedure for the estimation of regression 
coefficient vector is to minimize 
∑ ௜ሻߝሺܯ
௡
௜ୀଵ ൌ 	∑ ௜ݕሺܯ െ ଵߚ௜ଵݔ െ ଶߚ௜ଶݔ െ ⋯െ ௞ሻߚ௜௞ݔ

௡
௜ୀଵ  (3) 

for a suitably chosen function M. 
Let B be the set of all possible vectors β. If there is no further 
information, then B is k-dimensional real Euclidean space. 
The object is to find a vector ܾ′ ൌ ሺܾଵ, ܾଶ, . . . , ܾ௞ሻ from B that 
minimizes the sum of squared deviations of εi 's, i.e., 
ܵሺߚሻ ൌ ∑ ௜ଶߝ

௡
௜ୀଵ ൌ ߝᇱߝ ൌ ሺݕ െ ݕሻᇱሺߚܺ െ  ሻ          (4)ߚܺ

for given y and X. A minimum will always exist as S(β) is a 
real valued, convex and differentiable function. Write 
ܵ	ሺ	ߚ	ሻ. ൌ 	ݕ′ݕ	 ൅ ߚܺ′ܺ′ߚ	 െ  .ݕ′ܺ′ߚ	2	
Differentiate (4) with respect to β 
߲ܵሺߚሻ
ߚ߲

ൌ 2ܺᇱܺߚ െ  ݕ2ܺ′

߲ଶܵሺߚሻ
′ߚ߲ߚ߲

ൌ 2ܺᇱܺ 

The normal equation is 
߲ܵሺߚሻ
ߚ߲

ൌ 0 

	ൌ ܺᇱܺߚ ൌ ܺᇱ(5)           ݕ  
Equation (5) is the least-squares normal equations. To solve 
the normal equations, multiply both sides of equation (5) by 
the inverse ofܺᇱܺ.Thus, the least squares estimator of ߚ is  

ߚ	 ൌ ሺܺᇱܺሻିଵܺᇱ(6)                                                     ݕ 
 
3.2Coefficient of determination (R2)  
Let R be the multiple correlation coefficient between 
yand ଵܺ, ܺଶ, . . . , ܺ௞, then square of multiple correlation 
coefficient, (R2) is called as coefficient of determination. The 
value of R2commonly describes that how well the simple 
regression line fits to the observed data. This is also treated as 
a measure of goodness of fit of the model. 
Then 



 

~ 13 ~ 

International Journal of Applied Research 
 

ܴଶ ൌ 1 െ
ௌௌೝ೐ೞ
ௌௌ೅

                           (7) 
Where 
SSres : sum of squares due to residuals, 
SST: total sum of squares, 
R2measure the explanatory power of the model which in turn reflects the goodness of fit of the model. 
 
3.3 Estimate the parameters of Multiple Fuzzy regression 
Fuzzy linear regression analysis is first proposed by H Tanaka [1], and applied for many researches by Hsiao-Fan Wang et al. [4] 
the model is given below. 
෨ܻ ൌ Ã଴ܺ଴ ൅ Ãଵ ଵܺ	 ൅ ⋯൅ Ãேܺே ൌ  ሚܺ                     (8)ܣ
whereܺ ൌ ሾܺ଴, ଵܺ	, … . ܺேሿ் is a vector of independent variables, ܣሚ ൌ ሾÃ଴, Ãଵ,… . Ãேሿ் is a vector of fuzzy coefficient presented in 
the form of triangular fuzzy numbers denoted by Ã௝ ൌ ሺߙ௝, ௝ܿሻwith its membership functiondescribed as 

Ãೕ൫ߤ ௝ܽ൯ ൌ ൝
1 െ

หఈೕି௔ೕห

௖ೕ

0, ݁ݏ݅ݓݎ݄݁ݐ݋
, ௝ߙ െ ௝ܿ ൑ ௝ܽ ൑ ௝ߙ ൅ ௝ܿ, ∀݆ ൌ 1, 2, … , ܰ.                                                               (9) 

Where ߙ௝the central value and ௝ܿ is the spread value. 
Therefore the equation (8) can be written as  

෨ܻ௜ ൌ ሺߙ଴, ܿ଴ሻ ൅ ሺߙଵ, ܿଵሻ ଵܺ ൅ ሺߙଶ, ܿଶሻܺଶ ൅ ⋯൅ ሺߙே, ܿேሻܺே                                                                          (10) 
Equation (10) is fuzzy regression model for crisp input and crisp output data. By applying the Extension Principle [5], it construct 
the membership function of fuzzy number Y෩୧	 as shown in (11) and each value of dependent variable can be estimated as a fuzzy 
number is introduced in [9] as follows: 
Y෩୧	 ൌ ൫Y୧	

୐, Y୧	
୦ୀଵ, Y୧	

୙൯	i ൌ 1, 2, … ,M where the 
Lower bound of Y෩୧	is Y୧	୐ ൌ ∑ ሺα୨ െ c୨ሻ

୒
୨ୀ଴ X୧୨,  

The central value of Y෩୧	is Y୧	୦ୀଵ ൌ ∑ α୨
୒
୨ୀ଴ X୧୨ and 

The upper bound of Y෩୧	is Y୧	୙ ൌ ∑ ሺα୨ ൅ c୨ሻ
୒
୨ୀ଴ X୧୨. 

μሺY୧ሻ ൌ ൞
1 െ

หଢ଼౟ିଡ଼
౪஑ห

ୡ౪|ଡ଼|
	X ് 0,

1	X ൌ 0, Y ് 0	∀i ൌ 1, 2, … ,M.
0, X ൌ 0, Y ൌ 0

                                                                               (11) 

To determine the fuzzy parameters while minimizing the total sum of the spreads of the estimated values for a certain h level, 
using a linear programming problem in [12] called Min problem, as follows: 

෍෍൫݊݅ܯ ௝ܿ|X୧୨|൯

ே

௝ୀ଴

௠

௜ୀଵ

 

s. t. 

෍ߙ௝X୧୨ ൅ ሺ1 െ hሻ

ே

௝ୀ଴

෍ ௝ܿ|X୧୨|

ே

௝ୀ଴

൒ Y୧i ൌ 1, 2, … ,M 

∑ ௝X୧୨ߙ െ ሺ1 െ hሻே
௝ୀ଴ ∑ ௝ܿ|X୧୨|

ே
௝ୀ଴ ൑ Y୧i ൌ 1, 2, … ,M                                                                                (12) 

௝ܿ ൒ 0, ܽ ∈ ܴ, X୧଴ ൌ 1, ሺ0 ൑ h ൑1)   
 
In fuzzy linear regression, values of the vector independent variablesX୧ have its corresponding fuzzy numbers Y෩୧	 in which, without 
any other information, the probabilities of occurrence of all points in Y෩୧	 are assumed to be equal the membership functions of the 
fuzzy parameters in a fuzzy linear regression model are symmetric, then the values of Y୧	୦ୀଵis equal to തܻ௜is estimated by 
introduced in [9].as follows: 
 Then the Y෩୧	 we have Y୧	୐ ൌ Y୧	

୦ୀଵ െ c୲|X|andY୧	୙ ൌ Y୧	
୦ୀଵ ൅ c୲|X| 

 Therefore 
തܻ௜ ൌ

ଢ଼౟	
ైାଢ଼౟	

౑

ଶ
ൌ ሾሺY୧	

୦ୀଵ െ c୲|X| ) +ሺ	Y୧	
୦ୀଵ ൅ c୲|X|ሻሿ/2	= Y୧	୦ୀଵ                                                                                    (13) 

We consider the M data points the Y୧	୐ ൑ Y୧	 ൑ Y୧	
୙, 

Y୧	 ൌ 	Y୧	
୐ ൅ a୧∆,(14) 

Where ∆ is the difference between lower bound and upper bound. 
a୧is thecentervalues  
	Y୧	

୦ୀଵ ൌ Y୧	
୐ ൅ ୬౟

ଶ∆
.                                                                                        (15) 

∀i ൌ 1, 2, … ,M.	Since the difference between Y୧	୐	and		Y୧	୙ 
Where n୧ is the number of observation? 
൫Y୧	 െ Y୧	

୐൯ ൅ ൫Y୧	
୙ െ Y୧	൯ ൌ ݊௜∆	ൌ ൫Y୧	

୦ୀଵ െ 	Y୧	
୐൯ ൅	൫Y୧	

୙ െ Y୧	
୦ୀଵ൯, 

෍ሾ൫Y୧	 െ Y୧	
୐൯ ൅	൫Y୧	

୙ െ Y୧	൯ሿଶ	 ൌ 	෍ሾ൫Y୧	
୦ୀଵ െ 	Y୧	

୐൯ ൅	൫Y୧	
୙ െ Y୧	

୦ୀଵ൯ሿଶ
ெ

௜ୀଵ

ெ

௜ୀଵ

. 
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  
∑ ൫Y୧	 െ Y୧	

୐൯
ଶ
൅	ெ

௜ୀଵ ∑ ൫Y୧	
୙ െ Y୧	൯

ଶெ
௜ୀଵ ൅ 	2∑ ሾሺெ

௜ୀଵ Y୧	 െ Y୧	
୐ሻ. ሺY୧	

୙ െ Y୧	ሻሿ	                                                                           (16) 

ൌ෍ሺY୧	
୦ୀଵ െ 	Y୧	

୐ሻଶ෍ሺY୧	
୙ െ Y୧	

୦ୀଵሻଶ ൅ 	2෍ൣ൫Y୧	
୦ୀଵ െ 	Y୧	

୐൯. ൫Y୧	
୙ െ Y୧	൯൧.

ெ

௜ୀଵ

ெ

௜ୀଵ

ெ

௜ୀଵ

 

Putting the values equation (14),(15) in equation (17) can be written as 

෍൫Y୧	 െ Y୧	
୐൯

ଶ
൅	

ெ

௜ୀଵ

෍൫Y୧	
୙ െ Y୧	൯

ଶ
ெ

௜ୀଵ

൅ 	2෍ሾሺ

ெ

௜ୀଵ

a୧. ∆ሻ. ሺn୧. ∆ െ a୧. ∆ሻሿ 

ൌ෍ሺY୧	
୦ୀଵ െ 	Y୧	

୐ሻଶ෍ሺY୧	
୙ െ Y୧	

୦ୀଵሻଶ ൅ 	2෍ൣ൫n୧. ∆ 2ൗ ൯. ൫n୧. ∆ 2ൗ ൯൧.

ெ

௜ୀଵ

ெ

௜ୀଵ

ெ

௜ୀଵ

 

  

2෍ൣ൫n୧. ∆ 2ൗ ൯. ൫n୧. ∆ 2ൗ ൯൧.

ெ

௜ୀଵ

െ 2෍ሾሺ

ெ

௜ୀଵ

a୧. ∆ሻ. ሺn୧. ∆ െ a୧. ∆ሻሿ 

ൌ 2෍ቂ൫n୧. ∆ 2ൗ ൯
ଶ
.െa୧n୧∆ଶ ൅ a୧ଶ∆ଶቃ ൌ 2

ெ

௜ୀଵ

෍ሺ
n୧. ∆
2

െ a୧. ∆ሻଶ
୑

୧ୀଵ

 

ൌ 2	∑ ሺY୧	
୐ ൅ ୬౟.∆

ଶ
െ ൫Y୧	

୐ ൅ a୧. ∆൯ሻଶ
ெ
௜ୀଵ ൌ 2∑ ሺY୧	

୦ୀଵ െ Y୧	ሻଶ
ெ
௜ୀଵ .                                                                                    (17) 

By using equation (16) and (17),
∑ ሺY୧	 െ Y୧	

୐ሻଶெ
௜ୀଵ ൅ ∑ ሺY୧	

୙ െ Y୧	ሻଶ	
ெ
௜ୀଵ ൌ ∑ ሺY୧	

୦ୀଵ െெ
௜ୀଵ

	Y୧	
୐ሻଶ ൅ ∑ ሺY୧	

୙ െ Y୧	
୦ୀଵሻଶெ

௜ୀଵ ൅ 2∑ ሺY୧	
୦ୀଵ െ Y୧	ሻଶ.

ெ
௜ୀଵ         

 

                                                                                         (18) 

Let∑ ሺY୧	 െ Y୧	
୐ሻଶெ

௜ୀଵ ൅ ∑ ሺY୧	
୙ െ Y୧	ሻଶ	

ெ
௜ୀଵ  be the total sum of squares (SST) of fuzzy regression interval, 

 ∑ ሺY୧	
୦ୀଵ െ 	Y୧	

୐ሻଶ ൅ ∑ ሺY୧	
୙ െ Y୧	

୦ୀଵሻଶெ
௜ୀଵ

ெ
௜ୀଵ  be the regression sum of squares (SSR) and2∑ ሺY୧	

୦ୀଵ െ Y୧	ሻଶ.
ெ
௜ୀଵ  be the error sum of 

squares (SSE), then by using Equation (18) total sum of squares is as follows: 
ܵܵܶ ൌ ܴܵܵ ൅  (19)                              .ܧܵܵ
Here the total sum of squares (SST) measures the total variation of Y୧	between lower and upper bounds. The error sum of squares 
(SSE) estimates the difference when we use Y୧	୦ୀଵ to estimate Y୧	whereas regressionsum of squares (SSR) represents the variation 
of Y୧	୦ୀଵwith respect to lower and upper bounds.  
The measure of the degree of interpretation let us define an index of confidence by 
ܥܫ ൌ ௌௌோ

ௌௌ்
ൌ 1 െ ௌௌா

ௌௌ்
                              (20) 

which is similar to the coefficient of determinant, R2, in statistics. Since SST is a measure of the interval variation betweenY୧	୐ 
and, Y୧	୙and SSR represents the variation in Y෩୧	with respect to the centerregression lineY୧	୦ୀଵ so IC measures the degree of the 
variation of Y between Y L and Y U that can be explained by the centre regression line Y h=1. Because 0൑SSE൑SST, it follows that 
0൑IC൑1. So, it means that the higher the IC, the better is the Y h=1 i used to represent Yi.  
 
3.4 Numerical example 
Clerical employees of a large financial organization included questions related to employee satisfaction with their supervisor. 
There was a question designed to measure the overall performance of a supervisor, as well as questions that were related to 
specific activities involving interaction between supervisor and employee. An exploratory study has undertaken to try to explain 
the relationship between specific supervisor characteristics and overall satisfaction with supervisors as perceived by the 
employees. The response variable is overall rating of job being done by supervisorሺܻሻ, and explanatory variables are handles 
employee complaintsሺ ଵܺሻ, Does not allow special privilegesሺܺଶሻ, opportunity to learn new thingsሺܺଷሻ, Too critical of poor 
performancesሺܺସሻ, Rate of advancing to better jobs ሺܺହሻ. The data set is taken from [19], given below.

 
Table 1: Supervisor Performance Data 

 

 ૞ࢄ ૝ࢄ ૜ࢄ ૛ࢄ ૚ࢄ ࢅ
81 90 50 72 54 36 
74 85 64 69 79 63 
65 60 65 75 80 60 
65 70 46 57 85 46 
50 58 68 54 78 52 
50 40 33 34 64 33 
64 61 52 62 80 41 
53 66 52 50 80 37 
40 37 42 58 57 49 
63 54 42 48 75 33 
66 77 66 63 76 72 
78 75 58 74 78 49 
48 57 44 45 83 38 
85 85 71 71 74 55 
82 82 39 59 78 39 
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By using the equation (6) the parameters are estimated using 
MATLAB software as and multiple linear regression equation 
is obtained as follows: 
ܻ ൌ 8.71 ൅ 0.640 ଵܺ െ 0.211ܺଶ ൅ 0.459ܺଷ ൅ 0.056ܺସ െ
0.156ܺହ                (21) 
By using equation (7), to determine coefficient of 
determination of multiple regression model isܴଶ ൌ 83.8% 
which indicate that these five variables causes 83.8% 
variability in the Overall rating of job being done by 
supervisor. 
By using equation (12) the parameters are estimated using 
MATLAB software considering h=0.6 as minimum fuzziness 
criteria and the multiple regression equation is obtained as 
follows: 
ܻ ൌ ሺ6.3969, 89.3259ሻ ൅ ሺ0.6269,0.0987ሻ ଵܺ ൅
ሺെ0.1632,0.6580ሻܺଶ ൅ ሺ0.6790,െ0.6170ሻܺଷ ൅
ሺെ0.0066,െ0.7288ሻܺସ ൅ ሺെ0.3133, െ0.5573ሻܺହ      (24) 
And also by using equation (20), to determine coefficient of 
determination of multiple fuzzy regression model isܴଶ ൌ
88.08% which indicate that these five variables causes 
88.08% variability in the Overall rating of job being done by 
supervisor. 
By using equation (13), the parameters are estimated as 
follows: 
 

Table 2: Lowe bound, upper bound, central values, spread, of 
Supervisor Performance Data 

 

Center Spread 
Lower 
bound 

Upper 
bound 

ܑ܇ ഥࢅ
 ୀ૚ܐ

91.9107 27.2669 64.6438 119.1776 91.9107 91.9107 
75.8303 4.5693 71.261 80.3996 75.8303 75.8303 
65.0019 0.0009 65.001 65.0028 65.0019 65.0019 
66.5029 3.7501 62.7528 70.253 66.5029 66.5029 
51.5191 20.6505 30.8686 72.1696 51.5191 51.5191 
38.412 28.9758 9.4362 67.3878 38.412 38.412 
64.8761 10.1553 54.7208 75.0314 64.8761 64.8761 
61.1158 20.282 40.8338 81.3978 61.1158 61.1158 
46.3919 15.9785 30.4134 62.3704 46.3919 46.3919 
55.1532 19.6248 35.5284 74.778 55.1532 55.1532 
63.6148 5.9684 57.6464 69.5832 63.6148 63.6148 
78.3283 5.0803 73.248 83.4086 78.3283 78.3283 
53.0512 14.471 38.5802 67.5222 53.0512 53.0512 
78.5853 16.0437 62.5416 94.629 78.5853 78.5853 
78.7654 8.0972 70.6682 86.8626 78.7654 78.7654 

 
4. Conclusion 
In this paper least square regression analysis and multiple 
fuzzy regression model are compared using coefficient of 
determination for goodness of fit. The problem under study 
shows that the fuzzy multiple regression model is performing 
better than the least square method. Therefore, multiple fuzzy 
regression models can produce better prediction as compared 
to least square method. 
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