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Abstract 
In this research paper we explained and see that the results for ring of operators on Hilbert space is 
same as the ring, whenever we suppose H be a Hilbert space and R be a set of operators on H given by 
R={Ti:Ti2=O, TiTj=O for all i,j} then (R,+) is an additive abelian group and (R,.) is multiplicative 
group as well as the algebraic structure (R, +,.) forms a ring. Also a special case achieved that If (R,+,.) 
is a Boolean ring then it is commutative ring. Also we got a beautiful result as (R,+,.) is commutative if 
and only if (Ti + Tj)2 = Ti2 + 2TiTj + Tj2. We got result on homomorphism and isomorphism also as 
Let R and R1 be rings of operators on a Hilbert space H and f: R→R1 be a mapping defined by 
f(Ti)=Ti, then f is Homomorphism as well as Isomorphism. Thus here we have seen some important 
results of the algebraic structure Ring is the same of the Ring of operators on a Hilbert Space. 

 
Keywords: Homomorphism, operator, ring, space, hilbert space 
 

1. Introduction 
In this research paper we have constructed a set of operators R on a Hilbert space H and we 
have shown that R is an additive abelian group as well as multiplicative abelian group. 
Extending this study to the theory of ring we have also shown that R is a ring also with the 
operations addition and multiplication. In order to widen the range of study we have also 
studied some of the results for ring and we have found that these results are also true for this 
set R also. We in this paper, did not halt ourselves here but we travelled a bit more and 
studied also ring homomorphism and isomorphism and established some of the analogous 
results for the ring with the concept of the ring of operators. During this study out of which 
we have established some of the analogous results we have earned the experience to 
observed that the method of proving the results the method does change even a bit. 
 
2. Preliminaries and definitions 
In this section, we refer to some preliminaries on Ring, Operators and Hilbert Spaces, 
however we give below some of the relevant definitions to serve as a ready reference.  
 
2.1 Linear Space: The symbol K will stand for either the set R of all real numbers or the set 
C of all complex numbers. 
A structure of linear space on a set E is defined by two maps. 
a. (x, y) → x+ y of E×E into E and is called vector addition. 
b. (a, x) → ax of K×E into E and is called scalar multiplication. 
 
The above two maps are assumed to satisfy the following conditions. 
1. x + y = y + x, for every x, y in E. 
2. x + (y + z) = (x + y) + z for every x, y, z in E. 
3. There exists an element 0 in E such that x+0 = 0+x = x, for every x in E. 
4. For every element x in E there exists an element denoted by -x in E, such that x + (-x) = 

(-x)+ x = 0, for every x in E. 
5. A (x + y) = ax + ay, for every a in K and all x, y in E. 
6. (a + b) x = ax + bx, for every a, b in K and all x in E. 
7. (ab) x = a (bx), for every a, b in K and all x in E. 
8. 1·x = x, for every x in E.
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Whenever all the above axioms are satisfied, we say that E 

is a linear space (or a vector space) over K. 

Now if K be the set of all real numbers then E is a real linear 

space and similarly if K be the set of all complex numbers 

then E is called a complex linear space. 

 Here every element of E is called a vector and every 

element in K is called a scalar. 

The zero vector ‘O’ is unique and called the zero element or 

the origin. 

 

2.2 Linear Subspace 

Let E be a linear space (over a field K). A non-empty subset 

F of E is called a linear subspace (or simply subspace) of E 

if F itself forms a vector space over K with respect to the 

addition and scalar multiplication defined on E. 

 

2.3 Zero Space 

A linear space may consists solely of the vector 0 with 

scalar multiplication defined by α·0 = 0, for every α. We 

call this linear space as zero space and we always denote it 

by {0}. 

 

2.4 Linear Transformation 

Let E and E′ be any two linear spaces (over the field K). A 

mapping T:E→E′ is called a linear transformation if the 

following conditions are satisfied. 

(i) T (u+v) = T (u)+T (v), for every u, v are in E. (ii) T(αu) = 

αT (u) for every u∊E, and α is in K. Here the conditions (i) 

and (ii) can be together expressed as, T (αu+βv) = αT (u) 

+βT (v), for every u, v in E and α, β in K.  

A linear transformation is also called a linear mapping. If 

there be no chance of confusion then we shall write Tx in 

place T(x). Now it is easy to see that, If T:E→E′ be a linear 

transformation of a linear space E in to a linear space E′ 
then T preserves the origin and negatives. Since T (0) =T 

(0·0) =0·T (0)=0. Also, T (-x) =T (-1·x)=(-1)·T(x)=-T(x), 

for every x in E.  

 

2.5 Linear Operator 

Let E be a linear space (over the field K), then a mapping T: 

E→E′ from a linear space E in to E itself is called a linear 

operator on E, if it satisfies the following conditions. T 

(αu+βv)=αT(u)+βT (v), for every u,v in E and α,β in K.  

Thus T is a linear operator on a linear space E if T is a linear 

transformation from E in to E itself. 

 

2.6 Zero Transformation 

Let E and E′ be any two linear spaces (over the field K). Let 

T:E→E′ be a mapping from E in to E′. Now, if T is defined 

as T(u)=0 (zero vector of E′) for every u in E, then for u, v ∊ 

E; α, β ∊ K. we have au+βv ∊ E. But then, T (αu+βv)=0 = 

α·0 + β·0 = αT(u)+βT(v)  

Hence, T in this situation is a linear transformation from E 

in to E′ and T is called a zero transformation. If there be no 

chance of confusion then whenever T is a zero 

transformation we shall denote it by 0 (zero).  

 

2.7 Negative of A Linear Transformation 

Let E and E′ be any two linear spaces (over the field K). Let 

T:E→E′ be a linear transformation from E into E′. Then the 

negative of T denoted by –T is defined by (-T) (u)=- [T(u)] 

for every u ∊ E and T(u) ∊ E′. Since, T (u) ∊ E′ ⇒ -T(u) ∊ 

E′. Thus, –T is also a function from E into E′.   

Now, let α,β ∊K and u, v∊E. Then, αu+βv ∊ E Also, (-

T)(αu+βv) = -[T(αu+βv)] = -[αT(u)+βT(v)]=α[-T(u)]+β[-

T(v)] Thus, –T is a linear transformation from E in to 

E′.[since T is a linear transformation]  

 Hence, –T is called the negative of the linear transformation 

T. 

 

2.8 The inverse of a Linear Transformation 

Let E and E′ be any two linear spaces (over the field K). Let 

T: E→E′ be a linear transformation from E in to E′.  
We shall say T is one-one if, for x1,x2 ∊E and x1 ≠ x2 ⇒ T(x1) 

≠ T(x2) 

That is, T is one-one if, for x1,x2 ∊ E and T(x1) = T(x2) ⇒ x1 

= x2  

Further, T is onto if, for y ∊ E′ ⇒ ∃ x in E, such that T(x) = 

y.  

When T is onto and one-one then a function of the form of T 

̶1: E′→E, a function from E′ in to E, is read as the inverse of 

T and we define it as, Let y∊E′ be an arbitrary vector in 

E′.Since T is onto so, y ∊ E′ ⇒ ∃ x in E, such that T(x)=y. 

Also, x determined in this way is unique element of E 

because T is one-one. 

Thus, x1,x ∊E and x1 ≠ x ⇒ y = T(x) ≠ T(x1). Then we define 

T ̶1(y) = x. Thus we can say that, T ̶1:E′→E such that T ̶1(y) = 

x ⇔ T(x) = y. The function T ̶1 is itself one-one and onto. 

 

2.9 Range of a Linear Transformation 

Let T:E→E′ be a linear transformation from a linear space E 

into a linear space E′.Then range of T denoted by R(T) or 

equivalently as RT is the set of all vectors y in E′ such that, 

y = T(x), for same x in E. Thus the range of T is the image 

set of E under T. Thus, Range (T) = {T(x) ∊E′ for x in E}.  

  

2.10 Null Space of a Linear Transformation 

Let T:E→E′ be a linear transformation from a linear space E 

into a linear space E′. Then the null space of T will be 

denoted by N(T) or equivalently by NT is defined as the set 

of all vectors x in E, such that, T(x)=0 (where 0 is the zero 

vector of E′). Thus, N (T) ={x ∊ E: T(x) = 0 ∊ E′}.  

  

2.11 Kernel of Linear Transformation: Let T:E→E′ be a 

linear transformation from a linear space E into a linear 

space E′, then the ‘Kernel of T’is denoted by ‘KerT’ and is 

defined by KerT={x∊E:T(x)=0∊E′ (the zero vector of E′)}.  

 

2.12 Identity Operator 

Let E be a linear space (over the field K). Let 𝙸:E→E be a 

mapping from the linear space E into E itself. Now let 𝙸 be 

defined as 𝙸 (u) = u, for every u ∊E.  

Then for, α, β ∊ K; u, v ∊ E. αu + βv ∊ E. And then, 𝙸 
(αu+βv)= αu+βv = α𝙸(u)+β𝙸(v).  

Thus, 𝙸 is a linear transformation from E into E itself and 

we say, 𝙸 the identity operator on E. 

 

2.13 Kernel of an Identity Transformation 

Let 𝙸:E→E be an identity transformation then ‘Ker of 𝙸’ 

denoted by ‘Ker𝙸’ is defined as, Ker𝙸={x 

∊E:𝙸(x)=x=0}={0}.  

 

2.14 Kernel of the Zero Transformation 

Let 0:E→E be a zero transformation from a linear space E 

in to E itself. Then the “Kernel 0” is denoted by ‘Ker 0’ and 

is defined as, Ker 0 ={x ∊ E,: 0(x)=0}=E.  
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2.15 The Sum of Two Linear Transformations 

Let T1, T2 be two linear transformations from linear space E 

into linear space E′ then T1+T2 is also a linear 

transformation from E into E′.  
(We refer to Jha, K.K (1) page 168-169).  

As on the same ground the sum of a finite number of linear 

transformations is again a linear transformation.  

Similarly αT1 is also a linear transformation.  

 

2.16 The Product of Two Linear Transformations 

For any two linear transformations T1, T2 on E we define 

(T1T2) (x)=T1(T2(x)), x∊ E. We call T1T2 as the product of T1 

and T2.  

The product T1T2 is also a linear transformation because 

(T1T2) (αx+βy) = T1(T2(αx + βy)) = T1(αT2(x) + βT2(y)) = 

αT1 (T2(x)) + βT1(T2(y)) = α(T1T2)(x) + β(T1T2)(y), ⩝ α,β are 

scalars, x,y ∊ E.   

(We refer to Jha, k.k (1) page 169)  

 

2.17 Non Singular Linear Transformation 

Let T be a linear transformation on a linear space E then T is 

called invertible or nonsingular if T is one-one and onto 

otherwise T is called singular. Thus if T is a non-singular 

linear transformation on a linear space E then the 

transformation T:E→E is one-one and onto. Hence its 

inverse, T-1:E→E exists such that, T(x) = y ⇔ x = T-1(y) 

Also, if 𝙸 is the identity function on E. Then, TT-1 =𝙸= T-1T 

Further, (i) T-1 is also a linear transformation on E, (ii) A 

linear transformation on a finite dimensional vector space is 

E is non-singular if and only if it is one to one. (For proof of 

(i) and (ii) we refer to Jha, K.K (1) p-172) (iii) A linear 

transformation T on a linear space E is one-one if and only 

if T is onto.  

 

2.18 Norm 

Let E be a linear space over a field K. Then by a norm on E 

we understand a map f:E→R+ from E into R+ which 

satisfied the following conditions.  

 F (x) = 0 ⇔ x = 0.  

 F (λx) = ∣λ∣ f(x) ⩝ λ ∊ K, x ∊ E.  

 F (x + y) ≤ f(x) + f(y) ⩝ x,y ∊ E.  

 

Now if there be no chance of confusion in writing ∣∣ ∣∣ for f 

and ∣∣x∣∣ for f(x) then the all above three conditions take the 

form.  

 ∣∣x∣∣ = 0 ⇔ x = 0.  

 ∣∣λx∣∣ = ∣λ∣ ∣∣x∣∣ ⩝ λ ∊ K, x ∊ E.  

 ∣∣x+y∣∣ ≤ ∣∣x|| + ||y|| ∀ x,y ∊ E.  

 

(Where R+ denotes the set of non-negative real numbers) 

  

2.19 Normed Linear Space 

By a normed linear space we understand a linear space E 

together with a norm || || defined on it. At times a normed 

linear space is also called a normed vector space or a 

normed space.  

  

2.20 Metric (or Distance Function) 

Let M be a non-empty set then a real valued function d 

defined on M×M is called a distance function (or metric 

function or simply metric on M) if the following conditions 

are satisfied  

 d (x, y) ≥ 0. 

 d (x, y) = 0 ⇔ x = y.  

 d (x, y) = d(y, x).  

 d (x, z) ≤ d (x, y) + d(y, z). 

 

Here the condition (iii) is known as the condition of 

symmetry and condition (iv) is known as triangle inequality.  

Also, d (x, y) due to symmetry does not depend on the order 

of the elements.  

 

2.21 Metric Space 

The system (or the pair) (M, d) containing a non-empty set 

M and a metric d defined on it is called a metric space. The 

elements of M are called the points of the metric space (M, 

d). If there is no chance of confusion, we denote the metric 

space (M, d) by the symbol M which is used for the 

underlying set of points. One should always keep in mind 

that a metric space is not merely a non-empty set. 

(For the definition of metric and metric space, we refer to 

Simmons, G.F (1) (p-51)). 

Now we can verify that the normed linear space N is a 

metric space with respect to the metric d defined by d (x, 

y)= ||x-y||.  (For verification we refer to Jha, k.k (1)p-181). 

 

2.22 Cauchy Sequence 

A sequence (xn) of points of a metric space (M,d) is said to 

be a Cauchy sequence, if for each 𝜀>0 however small, there 

exists a natural number nt dependent on 𝜀 such that, m, n ≤ 

N and m, n ≥ nt ⇒ d(xm, xn) < 𝜀 

That is, if 𝑙𝑖𝑚
𝑥→∞

𝑑(xm, xn) = 0. 

 It is worth much to note that. (1) Every convergent 

sequence is a Cauchy sequence. (2) Cauchy sequence is not 

necessarily convergent.  (We refer to Simmons, G.F (1) p-

71).  

  

2.23 Complete Metric Space 

A metric space (M, d) is said to be complete if every 

Cauchy sequence in (M, d) is convergent in (M, d).  (We 

refer to Simmons, G.F (1) p-71). 

  

2.24 Banach Space 

A normed linear space N is said to be a Banach space if it is 

complete as a metric space.  

 

2.25 Inner Product (or Scalar Product) 

Let E be a linear space over a field K. By an inner product 

(or scalar product) on E we mean a map (x, y) → (x/y) of 

E×E into K. and satisfying the following conditions namely.  

1. (x/x) ≥ 0 ∀ x in E. 

2. (x/x) = 0 ⇔ x = 0.  

3. (x/y) = (𝑦/𝑥̅̅ ̅̅ ̅). 

4. (λx + μ y/z) = λ(x/z) + μ(y/z) ∀ λ, μ ∈ K, x, y, z ∈ E. 

 

However if K = R (the set of real numbers), then, the 

condition (iii) takes the form (x/y) = (y/x).  

Also, from conditions (iii) and (iv) we have (x/λy + μz) = 

(𝜆𝑦 +  𝜇 𝑧/𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) = 𝜆(𝑦/𝑥)  +  𝜇(𝑧/𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = �̅�(𝑦/𝑥̅̅ ̅̅ ̅) + �̅�(𝑧/𝑥̅̅ ̅̅ ̅) = 

�̅�(x/y) + �̅�(x/z), (We refer to Simmons, G.F (1) (p-245)) 

It is worthy much to note that an inner product space E is a 

normed linear space with respect to the norm defined in 

term of an inner product given by ||x || = +√ x/x.   

(For verification we refer to Jha, K.K (1) p-270)  

There is no chance of confusion then (x/y) is read as the 

inner product of x with y (or equivalently the dot product of 

x with y or the dot product of x and y. 
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 2.26 Hilbert Space 

A Banach space is said to be a Hilbert space if its norm is or 

can be defined by means of an inner product. 

 

2.27 Operator on a Hilbert Space H 

By an operator on a Hilbert space H we shall mean a 

continuous linear transformation from H into self.  

 

2.28 Set of Operators R on A Hilbert Space H 

We construct a set of operators R on a Hilbert space H in the 

following way: R={Ti:Ti
2=0, TiTj=0} 

 

2.29 Binary Operation 

Let E be a non-empty set then by a binary operation on E we 

mean a mapping O:E×E→E from E×E into E. given by, 

O:(x,y)→xOy ∈ E for all x, y ∈ E and (x,y) ∈ E×E.That is 

the closure property is satisfied.  

 

2.30 Group 

Let G be a non-empty set and ‘O’ be a binary operation 

defined on G. Then the pair (G,O) is said to be a group if 

and only if the following conditions are satisfied: (i) As ‘O’ 

is a binary operation so the closure property is automatically 

satisfied. (ii) The binary operation ‘O’ is associative That is, 

(aOb) Oc=aO (bOc) for all a, b, c ∈ G. (iii) Existence of an 

identity elements. For every element a ∊ G ∃ an element e in 

G such that, aOe = eOa = a (iv) Existence of an inverse 

elements. For every a∈G ∃ an elements a-1 read as the 

inverse of a, such that, aOa-1 = a-1Oa=e.  

However if an additinal condition of commutiative is 

satisfied. i.e. a O b = b O a ⩝ a, b∈G.  

Then, (G,O) is called an Abelian group or a commutative if 

there be no chance of confusion then in place of writing 

(G,O) we simply write G.  

 

2.31 Sub Group 

A non-empty subset H of a group G is said to be a subgroup 

of G. If H forms a group under a binary composition of G. 

Obviously if H is a subgroup of G, and K is a subgroup of 

H. Then K is a subgroup of G. If G is a group with identity 

element e. Then the subsets {e} and G are trivially 

subgroups of G and we call them the trivial subgroups. All 

other subgroups will be called nontrivial (or proper 

subgroups). Without any hesitation we sometimes use the 

notation H≤G to signify that H is a subgroup of G, and H=G 

to mean that H is a proper subgroup of G.  

It may be a little cumbersome at times to check whether a 

given subset H of a group G is a subgroup or not by having 

to check all the axioms in the definition of a group. We give 

here two results on subgroup which analogous result has 

been established in the next section with the concept of 

operator on a Hilbert space. (α)→ A non-empty subset H of 

a group G is a subgroup of G if and only if (i) a,b ∈ H ⇒ ab 

∈ H (ii) a ∈ H ⇒ a-1 ∈ H. (β)→ (i) A non void subset H of a 

group G is a subgroup of G if and only if a, b ∈ H ⇒ ab-1 ∈ 

H (ii) A non empty finite subset H of a group G is a 

subgroup of G if and only if H is closed under 

multiplication. (We refer to Bhambri S.K. (1) p-63-64) 

 

2.32 Homomorphism 

Let (G,O) and (G′,O′) be two groups then a mapping 

f:G→G′ is called a homomorphism if f(a O b) = f(a) O′ f(b). 

for a, b ∈ G when there is no scope of confusion we shall 

use the same symbol ‘. ’ in place of ‘O’ and ‘ O′ ’. Hence 

the above definition at once takes the form f:G→G′ is a 

homomorphism if f(a b) = f(a) f(b). 

That is f preserves the composition in groups. 

  

2.33 Isomorphism 

The function f:G→G′ is an isomorphism  

If (i) f preserves the composition in groups, (ii) f is one-one 

and (iii) f is onto. 

Clearly every isomorphism is a homomorphism or an 

isomorphism is a special case of homomorphism.  

Also if, f:G→G′ is homomorphism then we say that f(G) is 

the homomorphic image of G in G′.  
Also G′ is called homomorphic image of G if f is onto 

homomorphism and whenever f:G→G′ is isomorphism then 

f(G) is called an isomorphic image of G in G′. 
In this situation we also say that G is isomorphic to G′ or G 

is equivalent to G′. 
 

2.34 Ring Homomorphism 

Let R and R1 be any two rings. Let f:R→R1 be a mapping 

from R to R’ then f is called homomorphism (or ring 

homomorphism) if it satisfied the following conditions: (i) 

f(a+b)=f(a)+f(b) and (ii) f(ab)=f(a)f(b) for all a,b ∈ R. 

 

2.35 Ring Isomorphism 

A ring homomorphism is called a ring isomorphism if it is 

also one-one and onto. Whenever f:R→R1 is an 

isomorphism than R is called isomorphic to R1, Also if 

f:R→R is an isomorphism then we say that f is an 

automorphism. 

 

2.36 Boolean Ring 

A ring is called a Boolean ring if a2 = a ∀ a ∈ R. 

 

3. Results and Discussion 

 In this section we establish some of the results by making 

the use of the definitions given in above section. 

 

Theorem (3, I): Let H be a Hilbert space. R be a set of 

operators on H given by R={Ti:Ti
2=O, TiTj=O for all i,j} 

Then (R,+) is an additive abelian group.  

 

Proof: Since O2 = O and OTj = O for all j 

It follows that the zero operators belongs to R and here R is 

non empty.  

That R ≠ ∅ 

We define additio0050*n of operators in R as usual and find 

that for Ti,Tj ∈ R, 

(Ti+Tj)2 = Ti
2 + 2TiTj + Tj

2 = O ∈ R 

Thus Ti + T j= 0 implies that Ti+Tj ∈ R 

Hence R is closed with respect to addition. 

Also since operators obey the associative law with respect to 

addition.  

Thus for Ti, Tj and Tk ∈ R we have (Ti + Tj) + Tk = Ti + (Tj + 

Tk). 

Also zero operator is the additive identity of R. 

Since O + Ti = Ti + O = O for all i. 

Also Ti ∈ G implies Ti
2 = O (by the construction of the set 

R). 

 ⇒ (-Ti)2 = O ⇒ -Ti ∈ G 

That is for Ti ∈ R we see that -Ti ∈ R 

Also Ti + (-Ti) = O (operator) the identity operator. 

Also Ti + Tj = Tj + Ti 

Thu11`11111s R is an additive abelian group. 
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Theorem (3, II): Set R = {Ti:Ti
2 = O, Ti.Tj = O for all i,j} of 

non-singular operators on a Hilbert space H, Then (R,.) is 

multiplicative group. 

 

Proof: We have seen in theorem (3,I) that operator O is in 

R. That is R ≠ ∅ 

Also for Ti, Tj ∈ R, 

(TiTj)2 = (Ti) 2 (Tj)2 = Ti
2.Tj

2 

 = O.O = O ∈ R 

Thus for Ti, Tj ∈ R, Ti.Tj ∈ R implies R is closed with 

respect to multiplication.  

Also operators satisfy associative law with respect to 

multiplication.  

Also, for TiϵG, Ti
-1 exists such that Ti

-1 is also non-singular.  

Thus Ti
-1 ∈ R 

Thus we find that for Ti in R we get Ti
-1 (the inverse of Ti) in 

R. 

Also TiTi
-1=Ti

-1Ti=I 

Hence the existence of inverse element.  

Also for Ti ∈ R we have TiI=ITi=Ti 

So the identity element exists. 

Also TiTj=TjTi  

Thus, (R,) is a multiplicative abelian group. 

 

Theorem (3, III): The system (R, +,.) is a ring.  

Proof: we see that (i) Ti,Tj ∈ R ⇒ TiTj = O ∈ R 

Thus R is closed with respect to multiplaction. 

(ii)Also elements of R commute since 

TiTj = 0 = TjTi for all I,j 

Hence (Ti+Tj)2=Ti
2+Tj

2+2TiTj=0ϵR. 

Thus Ti,TjϵR implies that Ti+TjϵR 

Therefore R is closed with respect to addition  

(iii) zero operator is the additive identity of R. 

(iv) since for TiϵR implies Ti
2=0 ⇒ (-Ti)2 = Ti

2 = 0 ⇒ -Ti ϵ R 

Hence the additive inverse –Ti of Ti is also in R. 

Finally. Since elements of Rare operators, and associative as 

well as commutative laws of addition. Associative law of 

multiplication and distributive laws hold good for operator, 

these laws also hold good for elements of R.  

Hence R is ring. 

Remark: - In a ring (R,+,.) show that (Ti+Tj)2 =Ti
2 +TiTj+ 

TjTi+Tj
2, Where Ti,TjϵR. 

 

Proof: Since (Ti+Ti)2 = (Ti+Tj)(Ti+Tj) = (Ti+Tj)Ti + 

(Ti+Tj)Tj = Ti
2+TjTi+TiTj+Tj

2 

 

Theorem (2.3, IV): If (R,+,.) is a boolean ring then it is 

commutative. 

 

Proof: Since Ti
2=Ti  

This implies that (Ti+Tj)=(Ti+Tj)2=(Ti+Tj)(Ti+Tj) 

 

 = (Ti+Tj) Ti+(Ti+Tj)Tj 

 

 =Ti
2+TjTi+TiTj+Tj

2 

 

 =Ti+TjTi+TiTj+Tj [since Ti
2=Ti] 

 

Implies that Ti+Tj=Ti+TjTi+TiTj+Tj 

 

Implies that Ti+Tj-Ti-Tj=TjTi+TiTj 

 
⇒TjTi+TiTj=0 

 

⇒TiTj=-TjTi          (2.11) 

 

Also Ti
2=Ti           (2.12) 

 

 (-Ti)2=-Ti 

 

That is (-Ti)(-Ti)=-Ti 

 
⇒Ti

2=-Ti          (2.13) 

 

Thus from [(2.12) and (2.13)] 

 

 Ti=-Ti  

 

Then keeping this value in (2.11) we have, 

 

 -TiTj=-TjTi 

 

Hence TiTj=TjTi 

 

Therefore R is commutative. 

 

Also Ti=Ti
2=0⇒2Ti=0. 

 

Theorem (2.3, V): Ring (R,+,.) is commutative if and only 

if (Ti+Tj)2=Ti
2+2TiTj+Tj

2 

Proof: Let us assume that R is commutative  

Then (Ti+Tj)2=(Ti+Tj)(Ti+Tj)=Ti
2+TiTj+TjTi+Tj

2 

But R is commutative so TiTj=TjTi 

Thus (Ti+Tj)2=Ti
2+2TiTj+Tj

2 

Conversely, Let (Ti+Tj)2=Ti
2+2TiTj+Tj

2 for all Ti,TjϵR. 

Then (Tj+Ti)2=Tj
2+2TjTi+Ti

2 

Since the ring R is additive abelian group 

Hence Ti+Tj=Tj+Ti 

Thus (Ti+Tj)2=(Tj+Ti)2 

Implies that Ti
2+2TiTj+Tj

2=Tj
2+2TjTi+Ti

2 

⇒2TiTj=2TjTi 

Hence TiTj=TjTi  

⇒R is commutative.  

 

Theorem (2.3, VI): (i) Let R and R’ be rings of operators 

on a Hilbert space H. (ii) f: R→R’ be a mapping defined by 

f (Ti)=Ti, Then f is Homomorphism as well as isomorphism. 

Proof: since f (Ti+Tj)=Ti+Tj=f(Ti)+f(Tj) 

Also f (TiTj)=TiTj=f(Ti)f(Tj)  

Thus f is homomorphism. 

Also f (Ti)=f(Tj)⇒Ti=Tj 

Thus f is one-one.  

Again, for each Ti in R we get a f(Ti) in R’ and each f(Ti) in 

R’ is associated with TiϵR. 

Therefore f is onto. 

Thus we find that f is homomorphism, one-one and onto. 

Thus f is isomorphism. 

 

Theorem (2.3, VII): Let R and R’ be two rings of the 

operator on a Hilbert space H and f:R→R’ be an 

isomorphism of ring R onto ring R’ 

Then R is commutative ring if and only if R’ is commutative 

ring.  

 

Proof: Let R be a commutative ring  

Then we have already seen in[theorem(2.3,XI)] that R’ is 

commutative even if f is homomorphism in place of 

isomomorphism. 
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So in this case also R’ will be commutative. 

Conversely we suppose that R’ is commutative then it 

Remains to show that R is also commutative. 

For this, since f is isomorphism, f is one-one, onto and 

homomorphism.  

Hence f-1 exists and is one-one, onto. 

Also for Ti,TjϵR there exists Ti’,Tj’ in R’ such that  

 

F (Ti)=Ti’⇒f-1(Ti’)=Ti 

 

F (Tj)=Tj’⇒f-1(Tj’)=Tj  

 

Now TiTj=f-1(Ti’)f-1(Tj’)=f-1(Ti’Tj’)  

 

 = f-1(Tj’Ti’)  

 

 =f-1(Tj’).f-1(Ti’) 

 

 = TjTi  

 

That TiTj=TjTi for Ti,Tj are in R  

 

Therefore R is also commutative.  

In fact there remains still a vast scope to study it to establish 

analogous results for ring. so we left our study here for the 

students of the school of mathematics who desire to develop 

this study further. 
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