

~ 291 ~

ISSN Print: 2394-7500

ISSN Online: 2394-5869

Impact Factor: 5.2

IJAR 2018; 4(12): 291-295

www.allresearchjournal.com

Received: 01-10-2018

Accepted: 06-11-2018

Sandip KR Singh

CSE Department of Accurate

Institute of Management &

Technology, Uttar Pradesh,

India

Vivek Krishna

CSE Department of Accurate

Institute of Management &

Technology, Uttar Pradesh,

India

Correspondence

Sandip KR Singh

CSE Department of Accurate

Institute of Management &

Technology, Uttar Pradesh,

India

Comparative study of different word embedding

learning techniques

Sandip KR Singh and Vivek Krishna

DOI: https://doi.org/10.22271/allresearch.2018.v4.i12d.11463

Abstract

Natural language processing (NLP) has been transformed by word embedding, which makes it possible

for sophisticated language models to comprehend and produce text that is similar to that of humans.

Word embedding techniques have become essential tools for many natural language processing (NLP)

tasks, such as information retrieval, machine translation, and sentiment analysis, because they can

capture the syntactic and semantic relationships between words. We go deeply into the field of word

embedding in this research article with the goal of offering an exhaustive examination of its

foundational ideas, approaches, and uses.

Keywords: Natural language processing (NLP), python, word embedding

1. Introduction

The explosion of textual data available on the internet and the need to process and

understand this vast amount of information have spurred significant advancements in NLP.

One representation learning method that has become essential to the creation of cutting-edge

NLP models is word embedding. By mapping words into continuous vector spaces, word

embedding methods encode semantic and syntactic information, facilitating the extraction of

meaningful patterns and relationships from raw text data.

NLP has historically depended on straightforward methods like bag-of-words representations

and one-hot encoding, which are unable to capture the intricate subtleties of natural

language. By utilizing distributional semantics—the idea that words with similar meanings

typically occur in similar contexts—word embedding gets around these restrictions. This idea

forms the basis for popular word embedding algorithms such as Word2Vec, GloVe, and Fast

Text.

Our goal in writing this research paper is to give a thorough introduction to word embedding

methods and their uses. We begin by exploring the underlying principles of word embedding,

discussing the theoretical foundations and the motivation behind the development of these

methods. We then delve into the various methodologies employed, highlighting the key

differences and trade-offs between algorithms such as skip-gram, continuous bag-of-words,

and matrix factorization.

Furthermore, we investigate the impact of different training corpora, vocabulary sizes, and

hyper parameters on word embedding quality. Understanding these factors is crucial for

practitioners seeking to optimize word embedding models for specific NLP tasks or domains.

We discuss evaluation metrics commonly used to assess the quality of word embedding’s,

including intrinsic measures (e.g., word similarity, word analogy) and extrinsic measures

(e.g., performance on downstream NLP tasks).

Moreover, we examine recent advancements in word embedding research, such as

contextualized word embedding’s and multilingual word embedding’s, which aim to capture

the dynamic nature of language and support diverse linguistic contexts. We highlight the

benefits and challenges associated with these advanced techniques, as well as their

implications for practical applications.

Lastly, we offer a thorough overview of the many NLP tasks—such as sentiment analysis,

named entity recognition, machine translation, document classification, and question

answering—that have been improved by the application of word embedding. By showcasing

International Journal of Applied Research 2018; 4(12): 291-295

www.allresearchjournal.com
https://doi.org/10.22271/allresearch.2018.v4.i12d.11463

~ 292 ~

International Journal of Applied Research

real-world applications, we emphasize the transformative

power of word embedding and its ability to improve the

performance of NLP systems across various domains.

In conclusion, this research article provides a

comprehensive exploration of word embedding, covering its

theoretical foundations, methodologies, evaluation metrics,

recent advancements, and applications. By gaining a deeper

understanding of word embedding techniques, researchers,

practitioners, and developers can harness the true potential

of this powerful tool to advance the field of natural language

processing and create innovative solutions for language-

related challenges.

Introduction to Python

Python is a powerful and adaptable programming language.

Since its creation by Guido van Rossum in the late 1980s,

Python has grown to become one of the most popular

programming languages in a variety of industries. It's a great

option for both novice and expert programmers because of

its design philosophy, which emphasizes readability and

simplicity. Python's popularity can be attributed primarily to

its natural language-like syntax and low learning curve for

developers.

One of Python's core strengths lies in its extensive standard

library, which provides a comprehensive set of modules and

functions for a wide range of tasks. This rich library reduces

the need for developers to write code from scratch, allowing

them to leverage existing functionality and focus on solving

specific problems. Additionally, Python's active community

has developed an extensive ecosystem of third-party

packages, further expanding the language's capabilities.

Firstly, Python's dynamic typing and automatic memory

management alleviate the complexities associated with

memory allocation, making it a highly efficient language for

rapid prototyping and development. Moreover, Python's

cross-platform compatibility ensures that code written on

one operating system can run seamlessly on another,

increasing its versatility and accessibility

Python has a wide range of applications, which reflects its

versatility. Developers can create scalable and reliable web

applications with web development frameworks such as

Flask and Django. Python's prowess in scientific computing

and data analysis is demonstrated through libraries such as

NumPy, Pandas, and Matplotlib, which facilitate advanced

numerical computations, data manipulation, and

visualization. Additionally, Python has become a prominent

language in the field of artificial intelligence, with libraries

like TensorFlow and PyTorch supporting deep learning and

machine learning research.

Furthermore, Python's simplicity and readability foster a

collaborative programming environment, making it an

excellent language for teamwork and open-source projects.

Its clean and concise syntax enhances code maintainability

and encourages best practices. Python's emphasis on code

readability also facilitates the process of debugging and

troubleshooting, saving valuable time during the

development cycle.

Python's extensive documentation, community support, and

educational resources contribute to its popularity as a

beginner-friendly language. Its gentle learning curve enables

individuals new to programming to quickly grasp the

fundamentals and start building practical applications.

Python's versatility and simplicity have also made it a

favoured language for teaching computer science and

programming concepts in educational institutions

worldwide.

Python has gained widespread popularity as a versatile and

user-friendly programming language, offering a balance

between simplicity and functionality. Thanks to its user-

friendly syntax, extensive standard library, and thriving

third-party package ecosystem, For a variety of uses, such as

web development, data analysis, artificial intelligence, and

scientific computing, Python has emerged as the preferred

language. This article introduces Python by going over its

salient characteristics, benefits, and uses.

Ultimately, this piece functions as an overview of Python,

emphasizing its salient characteristics, benefits, and uses.

Because of its intuitive syntax, large standard library, and

vibrant third-party package ecosystem, Python has grown in

popularity and is now a useful programming language for

many different kinds of applications. Python provides a

strong platform for creating creative solutions and delving

into the fields of software development, data analysis, web

development, artificial intelligence, and more, regardless of

your level of experience as a developer.

Introduction to NLP

The field of natural language processing, or NLP, has

become revolutionary, revolutionizing our interaction with

computers and enabling machines to comprehend, analyze,

and generate human language. With the exponential growth

of textual data and the need to extract valuable insights from

it, NLP has become increasingly essential in diverse

domains such as information retrieval, sentiment analysis,

machine translation, and intelligent virtual assistants. This

research article serves as an introduction to NLP, providing

a comprehensive overview of its foundations,

methodologies, and applications.

Human language is a powerful communication medium, rich

in complexity and ambiguity. Extracting meaning from

language has long been a challenge for machines, as it

involves understanding the intricacies of grammar,

semantics, and context. Natural Language Processing (NLP)

aims to bridge this gap by developing computational models

and algorithms that enable machines to effectively process,

interpret, and generate human language.

The foundation of NLP lies in linguistic theories and

computational linguistics, which explore the structures and

rules underlying human language. By combining principles

from linguistics, artificial intelligence, and machine

learning, NLP researchers have developed techniques and

models to tackle the unique challenges posed by natural

language.

In this research article, we provide a comprehensive

introduction to NLP, beginning with an overview of its core

components. We explore fundamental concepts such as

tokenization, part-of-speech tagging, syntactic parsing, and

semantic analysis, which form the building blocks for

understanding and manipulating text data. We also examine

the challenges posed by language ambiguity, context

dependency, and linguistic variations across different

domains.

Next, we delve into the methodologies employed in NLP,

focusing on both rule-based and statistical approaches. Rule-

based systems utilize predefined linguistic rules to process

and interpret text, while statistical models leverage large

datasets to automatically learn patterns and make

predictions. We go over common methods like Conditional

~ 293 ~

International Journal of Applied Research

Random Fields (CRFs), Recurrent Neural Networks

(RNNs), and Hidden Markov Models (HMMs), stressing

their advantages and disadvantages.

Furthermore, we explore the applications of NLP across

various domains. Sentiment analysis, for instance, involves

extracting emotions and opinions from text, enabling

businesses to gauge customer feedback and public

sentiment. Machine translation tackles the challenge of

automatically translating text from one language to another,

fostering global communication and collaboration.

Information retrieval allows users to retrieve relevant

information from vast amounts of textual data, improving

search engines and recommendation systems. These are just

a few examples of the wide-ranging applications of NLP,

which continue to expand as the field evolves.

We also address the ethical considerations surrounding

NLP, such as privacy, bias, and fairness. As NLP systems

influence decision-making processes and interact with users,

it is crucial to ensure transparency, accountability, and

inclusivity in their design and deployment. We explore

ongoing research efforts and best practices aimed at

addressing these ethical concerns.

In conclusion, this research article provides a

comprehensive introduction to NLP, encompassing its

foundational concepts, methodologies, and diverse

applications. By understanding the core principles and

techniques of NLP, researchers, practitioners, and

enthusiasts can embark on the journey of developing

innovative solutions to harness the power of human

language and transform the way we interact with intelligent

systems.

Objective

The objective of developing a word embedding model is to

create a high-quality word embedding representation that

captures the semantic and syntactic relationships between

words in a given corpus. Specifically, the objectives of

developing a word embedding model are:

 To select an appropriate algorithm and architecture that

can generate high-quality word embeddings based on

the characteristics of the corpus and the desired

performance of the downstream NLP tasks.

 To pre-process the corpus to ensure that the word

embeddings capture the relevant information and avoid

noise and bias.

 To train the word embedding model on a large corpus

to capture the statistical co-occurrence patterns of

words.

 To assess the word embeddings' quality using both

intrinsic and extrinsic evaluation metrics in order to

make sure they capture the intended syntactic and

semantic relationships between words and enhance the

efficiency of NLP tasks that come after.

 To fine-tune the word embedding model on a specific

task or domain to improve its performance and adapt it

to specific needs.

 To make it possible for the word embedding model to

handle difficult NLP tasks like handling rare words,

multi-word expressions, and words that are not part of

one's vocabulary.

Problem Definition

Define The main problem that occurs with word embedding

is to address the limitations of traditional representation

learning techniques in capturing the rich semantic and

syntactic relationships between words in natural language.

While traditional methods such as one-hot encoding and

bag-of-words representations have been widely used, they

fail to capture the contextual nuances and semantic

similarities between words.

The aim of this study is to investigate and assess word

embedding methods as a potential remedy for this issue. By

transforming words into continuous vector representations,

word embedding seeks to bring together words with similar

meanings in a high-dimensional space by placing them

closer together. This approach enables machines to

understand the semantic and syntactic relationships between

words, facilitating more advanced natural language

processing tasks.

The research article aims to address the following questions

and challenges related to word embedding:

1. How can word embedding techniques capture the

complex nuances and semantic relationships between

words?

2. What are the different methodologies and algorithms

for generating word embeddings, and how do they

compare in terms of performance and efficiency?

3. How can the quality of word embeddings be evaluated

and compared? What are the appropriate evaluation

metrics for assessing the effectiveness of word

embedding techniques?

4. What are the potential applications and benefits of word

embedding in various natural language processing

tasks, such as sentiment analysis, machine translation,

named entity recognition, and document classification?

5. Are there any limitations or challenges associated with

word embedding techniques, such as handling out-of-

vocabulary words, addressing biases, or adapting to

different languages or domains?

6. What recent advancements have been made in the field

of word embedding, and how do they address the

limitations of traditional techniques?

Our research seeks to answer these issues and provide light

on the usefulness and possible uses of word embedding

techniques, opening the door to developments in natural

language processing and enhancing language-related task

performance.

Literature Review
In the field of natural language processing (NLP), word

embedding has become a potent technique that helps

machines comprehend and process human language more

efficiently. By examining the theoretical underpinnings,

methodology, assessment metrics, and applications of word

embedding techniques, this literature review seeks to present

a comprehensive overview of the field's current research on

the subject. By examining the current state of the field, this

review seeks to identify the strengths, limitations, and

potential future directions for word embedding research.

Here are some notable studies on word embedding:

1. Word2Vec: Distributed Representations of Words and

Phrases and their Compositionality (2013) by Tomas

Mikolov et al. This paper introduced the Word2Vec

algorithm, which is a neural network-based method for

learning word embeddings from large text corpora. The

paper shows that Word2Vec outperforms previous

methods on a variety of NLP tasks.

~ 294 ~

International Journal of Applied Research

2. GloVe: In 2014, Jeffrey Pennington and colleagues

published Global Vectors for Word Representation.

This paper presents the GloVe algorithm, which learns

word embeddings that capture the global co-occurrence

statistics of words in a corpus through matrix

factorization. The study demonstrates that GloVe

performs better on multiple NLP tasks than Word2Vec.

3. FastText: Enriching Word Vectors with Subword

Information (2016) by Piotr Bojanowski et al. This

paper introduces the FastText algorithm, which extends

the Word2Vec model to learn embeddings not just for

words but for subwords as well. This enables FastText

to handle out-of-vocabulary words and to capture

morphological information in languages with complex

inflection.

4. Improving Distributional Similarity with Lessons

Learned from Word Embeddings (2016) by Manaal

Faruqui and Chris Dyer. This paper explores the use of

different neural network architectures for learning word

embeddings and shows that simple models such as skip-

gram can perform as well as more complex models on

several NLP tasks.

5. Matthew Peters and colleagues (2018) published Deep

Contextualized Word Representations. The ELMo

(Embeddings from Language Models) algorithm is

presented in this paper. It learns word embeddings that

are contextually sensitive by leveraging deep

bidirectional language models. According to the paper,

ELMo performs better on a number of NLP tasks than

earlier approaches.

6. Jacob Devlin along with others. BERT: Pre-training of

Deep Bidirectional Transformers for Language

Understanding was published in 2018. This paper

presents the BERT (Bidirectional Encoder

Representations from Transformers) algorithm, which

uses a deep bidirectional transformer model to pretrain

word embeddings on large text corpora. The study

shows that BERT achieves state-of-the-art results on a

number of NLP tasks.

These studies have contributed significantly to the

development of word embedding techniques and have

enabled significant advances in natural language processing

applications.

Proposed System

Here’s our proposed system for proceeding with word

embedding:

1. Data acquisition: Obtaining the text data needed to train

the word embedding model is the first step. This might

entail gathering information from multiple sources,

gaining access to publicly accessible datasets, or

scraping data off of websites.

2. Data pre-processing: The text data needs to be pre-

processed to remove any unwanted elements, such as

punctuation, stop words, and special characters. The

data is also tokenized, i.e., split into individual words or

phrases, and cleaned of any irrelevant or inconsistent

data.

3. Model selection: The next step is to choose the

appropriate word embedding model for the specific use

case. This could involve selecting from pre-trained

models such as Word2Vec or GloVe, or training a

custom model using deep learning frameworks such as

TensorFlow or PyTorch.

4. Training the model: The selected word embedding

model is trained on the pre-processed text data to

generate a set of word embeddings. The training

process involves optimizing the model parameters to

maximize the accuracy of the embeddings.

5. Evaluation: A variety of evaluation metrics, including

word similarity or analogy tasks, are used to assess the

quality of the word embeddings. Making sure the

embeddings appropriately represent the syntactic and

semantic relationships between words is the aim.

6. Integration: Once the word embedding model has been

trained and evaluated, it can be integrated into a larger

NLP system or used for specific tasks, such as text

classification or sentiment analysis.

Methodology

Here is an outline of the typical methodology and the one

we used for word embedding:

 Corpus Preparation:The first step is to gather a large

and diverse corpus of text data. This corpus serves as

the training data for the word embedding model. The

corpus can include various sources such as books,

articles, websites, or even specialized domain-specific

texts. Preprocessing steps like tokenization, removing

stopwords, and handling punctuation are applied to

clean the text data.

 Choosing an Embedding Algorithm: Select an

appropriate embedding algorithm based on the specific

requirements and characteristics of the task. Popular

algorithms include Word2Vec, GloVe, FastText, and

ELMo. Each algorithm has its own unique approach to

generating word embeddings, such as predicting

surrounding words (Word2Vec), leveraging co-

occurrence statistics (GloVe), incorporating subword

information (FastText), or considering contextual

information (ELMo).

 Training the Word Embedding Model:Train the

selected embedding algorithm on the prepared corpus.

The training process involves learning the vector

representations of words based on the chosen algorithm.

The model aims to optimize certain objectives, such as

predicting nearby words or reconstructing word co-

occurrence matrices, to capture the relationships

between words. The training process involves iterating

over the corpus multiple times to update the word

vectors iteratively.

 Hyperparameter Tuning:The embedding algorithms

have various hyperparameters that need to be fine-tuned

for optimal performance. These hyperparameters may

include vector dimensionality, context window size,

learning rate, number of training iterations, and

subsampling thresholds. The ideal values for these

hyperparameters vary depending on the task at hand

and have a big influence on the caliber of the word

embeddings that are produced. Advanced optimization

techniques or systematic grid search can be used for

tuning.

 Evaluation:Evaluate the quality of the trained word

embeddings to ensure they capture the desired semantic

and syntactic relationships. Intrinsic evaluation

measures assess the embeddings' performance on tasks

like word similarity and analogy tasks, where the

~ 295 ~

International Journal of Applied Research

embeddings are evaluated against human-labeled

similarity or analogy scores. Extrinsic evaluation

measures assess the impact of the embeddings on

downstream NLP tasks, such as sentiment analysis,

machine translation, or named entity recognition.

 Post-processing and Visualization:After training and

evaluation, post-processing steps can be applied to

further refine the word embeddings. This may involve

techniques like dimensionality reduction (e.g., Principal

Component Analysis or t-SNE) to visualize the

embeddings in lower-dimensional spaces for

interpretability and analysis.

 Application and Fine-tuning:The trained word

embeddings can be utilized in various NLP tasks, either

as features for supervised models or as inputs for

unsupervised algorithms. Fine-tuning may be necessary

for specific tasks, where the embeddings are updated or

fine-tuned on task-specific data to adapt them to the

target domain or improve their effectiveness for the

given task.

By following this methodology, we can generate effective

word embeddings that capture semantic and syntactic

relationships between words, enabling more accurate and

robust natural language processing applications.

Model

1. Monolingual model

 model =

Word2Vec(sentences=monolingual_corpus_sents,

vector_size=64, sg=1, window=8, min_count=5)

 model.save('custom_new_monolingual.model')

 model =

Word2Vec.load('custom_new_monolingual.model')

2. Enlish model

 model = Word2Vec(sentences=english_corpus_sents,

vector_size=64, sg=1, window=8, min_count=5)

 model.save('custom_new_english.model')

 model = Word2Vec.load('custom_new_english.model')

3. Hindi model

 model = Word2Vec(sentences=hindi_corpus_sents,

vector_size=64, sg=1, window=8, min_count=5)

 model.save('custom_new_hindi.model')

 model = Word2Vec.load('custom_new_hindi.model')

References

1. Mikolov T, Chen K, Corrado G, Dean J. Efficient

estimation of word representations in vector space. In:

Proceedings of the International Conference on

Learning Representations (ICLR); c2013.

2. Pennington J, Socher R, Manning C. GloVe: Global

vectors for word representation. In: Proceedings of the

Conference on Empirical Methods in Natural Language

Processing (EMNLP); c2014.

3. Kaushik P, Yadav R. Reliability design protocol and

blockchain locating technique for mobile agent. Journal

of Advances in Science and Technology (JAST).

2017;14(1):136–141. https://doi.org/10.29070/JAST

4. Kaushik P, Yadav R. Traffic Congestion Articulation

Control Using Mobile Cloud Computing. Journal of

Advances and Scholarly Researches in Allied

Education (JASRAE). 2018;15(1):1439–1442.

https://doi.org/10.29070/JASRAE

5. Kaushik P, Yadav R. Reliability Design Protocol and

Blockchain Locating Technique for Mobile Agents.

Journal of Advances and Scholarly Researches in Allied

Education (JASRAE). 2018;15(6):590–595.

https://doi.org/10.29070/JASRAE

6. Kaushik P, Yadav R. Deployment of Location

Management Protocol and Fault Tolerant Technique for

Mobile Agents. Journal of Advances and Scholarly

Researches in Allied Education (JASRAE).

2018;15(6):590–595. https://doi.org/10.29070/JASRAE

7. Kaushik P, Yadav R. Mobile Image Vision and Image

Processing Reliability Design for Fault-Free Tolerance

in Traffic Jam. Journal of Advances and Scholarly

Researches in Allied Education (JASRAE).

2018;15(6):606–611. https://doi.org/10.29070/JASRAE

8. Bojanowski P, Grave E, Joulin A, Mikolov T.

Enriching word vectors with subword information.

Transactions of the Association for Computational

Linguistics. 2017;5:135–146.

9. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-

training of deep bidirectional transformers for language

understanding. In: Proceedings of the Conference of the

North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies (NAACL-HLT); 2018.

10. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C,

Lee K, Zettlemoyer L. Deep contextualized word

representations. In: Proceedings of the Conference of

the North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies (NAACL-HLT); 2018.

