
 

~ 238 ~ 

 
ISSN Print: 2394-7500 

ISSN Online: 2394-5869 

Impact Factor: 5.2 

IJAR 2018; 4(8): 238-240 

www.allresearchjournal.com 

Received: 11-06-2018 

Accepted: 14-07-2018 

 

Dr. Daya Shankar Pratap 

Research Scholar, Department 

of Mathematics, JP 

University, Chapra, Bihar, 

India 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Dr. Daya Shankar Pratap 

Research Scholar, Department 

of Mathematics, JP 

University, Chapra, Bihar, 

India 
 

 

 

Simple and accurate approach to teaching linear 

algebra 

 
Dr. Daya Shankar Pratap 

 
Abstract 

In this Studies, we develop the philosophical and practical background for teaching an elementary 

Linear Algebra course from the requirements that are particular to the subject. It mixes the inner 

workings and logic of Linear Algebra and matrices with concepts, hands-on computational schemes, 

and applications for a satisfying comprehensive teaching and learning experience. 
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Introduction 

For a wholistic, unified, and balanced approach to teaching Linear Algebra, we should start 

with the key notion of Linear Algebra. In our opinion, Linear Algebra essentially deals with: 

vectors, geometry, linear transformations, and matrices. 

And in essence, Linear Algebra is governed by an equation, namely the algebraic linearity 

condition 

f (αx + βy) = αf (x) + βf (y) 

This equation contains the main ingredients of the subject. Namely 

a) vectors x and y, 

b) linear combinations αx + βy, or geometry, for scalars α and β and vectors x, y, 

c) and a linear transformation f between two vector spaces. 

 

Being defined and based on an equation, “Linear Algebra” thus is a natural part of 

“Algebra”. Clearly this fundamental equation should serve well as the conceptual core and 

the beginning of our studies and teaching. 

Therefore one of the first tasks in elementary Linear Algebra consists of describing all linear 

transformations f: Rn → Rm as matrix × vector multiplication, where the “standard matrix” 

AE for f and the matrix × vector product are short-hand notations for the action of the linear 

map f. This puts matrices firmly at the core of Linear Algebra.  

Following our desire for balance, we now balance the conceptual with the concrete in our 

teaching. For this purpose we introduce row reduction and applications to linear equations. 

Further balancing is needed, however. Row reduction is mechanically tedious to do by pencil 

on paper. To learn and understand this algorithm, it suffices to practice it over the integers. 

Hence each teacher must learn how to construct infinitely many integer test problems. When 

this relatively complicated algorithm, ‘relatively complicated’ in relation to the math 

maturity of sophomores, has been balanced with easy integer arithmetic, students realize 

quickly that linear transformations (or matrices), row reduction, and linear equations are 

intimately linked. 

The geometry of Rn extends, however, beyond mere vectors: Every linear transformation 

generates two intrinsic and complementary subspaces: the image and kernel. Any description 

of the image involves the solvability of a linear system Ax = b, while every solution to Ax = 

0 belongs to the kernel. That is, both types of subspaces can be well understood from linear 

equations and linear transformations x → Ax. To continue, we may ask: how large are these 

two elemental subspaces, how can we describe them. One, the image, is a span, while the 

kernel obeys a set of defining equations. We can translate between these two generic 

descriptions of a subspace by using special row reduction schemes, and thus we are back to 

computations. 
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Subspaces lead to the “king chapter” of any elementary 

Linear Algebra course, to linear (in) dependence, basis, and 

dimension. The ‘classical’ and standard first definition of 

linear independence of column vectors ui: 

 
i

iii allu 00 
 

should, however, come only after a transformation based 

one. We rather introduce linear (in) dependence based on 

the vector–matrix identification: 

 
the matrix with columns ui Rn. 

Now we study the linear transformation x  Rk   Ux  

Rn: How large is the image of Rk under the mapping by U? 

What vectors generate im(U) = span {u1 . . . uk}? 

A row reduction R of U shows that any column vector ui 

without a corresponding pivot in R is a linear combination, 

i.e. linearly dependent of the previous columns uj for j < i. 

Hence our preferred first concrete linear independence 

definition: 

A set of vectors u1 . . . uk  Rn is linearly dependent  a 

row echelon form of Unk has less than k pivots. It is linearly 

independent  a row echelon form of Unk has k pivots. By 

applying the unique solvability criterion of linear systems 

(no free columns) we obtain the ‘classical’ linear 

(in)dependence condition. This gives us a dual insight: 

computing a row echelon form R of the column vector 

matrix U decides linear independence among the ui 

practically, while the ‘classical’ definition helps in abstract 

settings such as in proofs. 

In the same vein we develop a dual definition for the 

concept of a ‘basis’, namely: a basis of a (sub)space is 

defined in two equivalent ways as 

a) a maximally linearly independent set of vectors in that 

(sub)space, or 

b) a minimal spanning set of vectors for the (sub)space. 

c) Knowing ‘basis’ leads us to study “basis change”. Here 

we again identify a given basis U = {u1 . . .  un} of Rn 

with the column vector matrix 

 

 
 

For the standard unit vector basis E: = {e1 . . . en}, a point x 

= i xiei  Rn has the standard E-basis coordinate vector 

 

 
 

For a basis U = {u1 . . . un} of Rn, the point x = i βiui  Rn 

has the U coordinate vector 

 

 
 

For any third basis V = {v1 . . . vn} we likewise have x = xE = 

VxV. Thus  

VxV = x = UxU, or xV = V−1UxU and xU = U−1VxV 

This points to a practical row reduction scheme for finding 

basis change matrices XV←U: = V−1U. To be able to 

compute these easily by hand, teachers must be made 

familiar with generating unimodular integer matrices. 

Everything mentioned and practiced so far ties together 

when we represent a given linear transformation f: Rn → Rn, 

or its standard matrix representation A = AE, with respect to 

another basis U. The U basis representation AU of f maps U-

coordinate vectors to U-coordinate vectors, while AE maps 

standard E vectors to standard E vectors. As xE = UxU and yU 

= U−1yE for all x and y  Rn, we note that AExE = AEUxU and 

thus “AU” xU = U−1AEUxU describes the linear transformation 

completely in terms of U-coordinate vectors. This interprets 

a basis change as matrix similarity. It links matrix 

simplification, and specifically diagonalizability, to the 

notion of an eigenvector and eigenvalue: if AEui = λiui for n 

linearly independent vectors ui, then for the column vector 

matrix 

 
 

the matrix AU= U−1AEU = diag(λi) has a most simple 

diagonal appearance.  

All eigenvalues of A can be found from the least common 

multiple of the set of all vanishing polynomials {pxi (A)} for 

a basis {x1 . . . xn} of Rn. (Of course, with hand-

computations, we generally practise this only for n 7 4 or 5.) 

The vector iteration approach leads immediately to the 

strong version of the Cayley–Hamilton theorem. Vector 

iteration prepares students naturally for invariant subspaces 

and the Jordan Normal Form, all in a first course. 

For more specific applications we turn to orthogonality. 

This can be explained by using the stable modified Gram-

Schmidt process in analogy to Gaussian elimination, rather 

than by using its unstable ‘classical’ variant. (As teachers 

we need to be above board and not clutter our student’s 

perception with obsolete algorithms that may take years to 

correctly dismiss.) Most simply said, the process of 

orthogonalizing k row vectors u1 . . . uk  Rn in levels 

viamodified Gram–Schmidt is analogous to row reducing 

the matrix 

 
 

via Gaussian elimination. 

If the complete row reduction of A to row echelon form R 

can proceed without any swaps, the first level sweep of row 

reduction creates row equivalent rows ju~
for j = 2 . . .  k in 

A’s update that lie in the coordinate plane span {e2 . . .  en} 

 Rn. Geometrically, the row reduction of one row uj via the 

pivot u11  0 of row u1 projects uj onto span {e2 . . .  en}. On 

the next level, Gauss uses 2
~u

 to update each of the updated 

rows ju~
span {e2 . . . en} to lie in span{e3 . . .  en} of Rn for j 

=3 . . .  k, etc. 

That is to create a row echelon form R for A via Gauss we 

first alter n − 1 row vectors in A via A’s first row u1, then we 

update the trailing and updated n − 2 rows of A via its 

second updated row, etc. (Fig. 1). 

The modified Gram–Schmidt algorithm also updates the 

row vectors u1 . . . uk of A in levels, but with an eye on 
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orthogonality rather than on zero leading coefficients (Fig. 

2). In modified Gram–Schmidt we first replace each uj for j 

= 2 . . . k by a vector vj  span{u1, uj} that lies in the n − 1 

dimensional subspace 


1u
= {v  Rn|v·u1 = 0}. 

 

Then we update the newly computed vectors v3 . . . vn to lie 

in span {v2, vj} and in 


2v
 for j = 3 . . . k, etc., until we 

normalize. Further topics such as symmetric and normal 

matrices, the singular value decomposition, and the Jordan 

normal form may lie beyond the reach of a one-semester 

elementary Linear Algebra course. However, they can now 

be treated easily by matrix theoretic means such as via the 

Schur Normal form and vector iteration. 

 

 
 

Fig 1: Gaussian elimination 

 

 
 

Fig 2: Modified Gram-Schmidt 

 

Results 

Rethinking and retooling how to teach elementary Linear 

Algebra was Emily Haynsworth’s desire when I joined her 

at Auburn. May be I could try to reshape our “miserable 

266” introductory course, she suggested in 1982. 

The above reformulation of how to teach Linear Algebra 

from a linear algebraic, unified, balanced, and conceptual 

viewpoint took 18 years to realize. It has resulted in the 

textbook “Transform Linear Algebra”. 

Successes. By following a well-balanced conceptual 

approach such as ours, students gain math maturity and 

teachers find satisfaction in their teaching, i.e., no more 

‘miserable 266’ classes. 

The approach emphasizes the value of concepts and first 

principles, making problem understanding and problem 

solving easy and possible, perhaps for the first time in a 

student’s math career. The entire course becomes a self-

validating experience for students and teachers. 

 

 

Conclusion 

Linear Algebra has a high level of internal structure. These 

inner forces drive our chosen sequence of subjects and 

determine our depth of conceptualization. Linear 

transformations can be used to act as the fundamental 

concept and basis for the whole course. When the structure 

is exposed and real world applications are solved through 

conceptual understanding, we serve the students well in 

their intellectual and personal maturation. When we teach 

from examples, students tend to become disoriented and 

confused. They often cannot retain concepts long enough to 

be able to apply them later. 

This approach is difficult for and exposes the ‘thinking 

impaired’, ‘cannot read’, ‘no time to study’ students. Such 

learning disorders—around 8–15% of the students now 

suffer from them in any of my typical undergraduate math 

courses—become very obvious during a transform based 

Linear Algebra course. 
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