Phytochemical screening of Solanum nigrum L and S. seaforthianum Andr. of Rewa district (M.P.) India

Tilotma Chaudhri, Sonu Rahi and Santosh Kumar Agnihotri

Abstract

The present investigation designed to evaluate the phytochemical screening on leaf extract of Solanum nigrum L and S. seaforthianum Andr. From of Rewa districts (M.P.) India. Three study site were selected such as Chorhata, University campus and Govindgarh etc. The phytochemical constituents like alkaloids, saponins, tannins, flavonoides and proteins of both species in dry and shady areas was investigated qualitatively. The results reveals that the protein is more abundant on Solanum nigrum L of shady areas than S. seaforthianum Andr. as comparatively of dry areas of three different districts of the same. Apart from protein, other phytochemical constituents such as alkaloids, saponins, tannins, flavonoides are more or less presence in both species of the study areas. The study scientifically validates the use of both species in traditional medicine.

Keywords: Phytochemicals, Solanum nigrum L, S. seaforthianum Andr.

Introduction

Herbal remedies have been used in Homeopathy, Ayurvedic, Allopathy and traditional medicine since time immemorial. Medicinal plants play a major role in traditional and modern systems. Their use has been augmented by various studies and uses due to the many side effects resulting from the use of synthetic drugs, antibiotics and high costs. People in the rural areas mainly rely on medicines to treat their ailments due to the unavailability of modern medicines and hospitals. In developing countries, 80% of the population still use traditional remedies derived from natural resources (Chopra et al., 1996 and Farnsworth et al. 1985) [1-2]. In India, with more than 75% of the population living in rural areas (Anonymous, 1991 and Rabe and Staden, 1977) [3-4] close to natural resources, rich medicinal uses have existed among the indigenous people for years.

The therapeutic properties of medicinal plants are mainly due to the presence of a variety of complex chemical compounds of different formations that occur as secondary metabolites. Medicinal plants form a large group of economically important plants that provide the basics for the use of traditional medicine. The medicinal value of plants lies in some chemical reactions that produce a specific physical action in the human body. Phytochemical research based on ethno pharmacological information is generally considered to be an effective means of detecting new anti-infective agents from higher plants (Karthikeyan, et al. 2009 and Duraipandiyan, et al. 2006) [5-6].

Therapeutic drugs Not only for the discovery of drugs, but also for the synthesis of complex chemicals Revealing new sources of economic substances such as tannins, oils, gums, precursors is valuable information that requires knowledge of the chemical components of the plant. In addition, knowledge of the chemical components of plants is even more valuable in discovering the true value of folk remedies (Arokiyaraj, 2013 and Mojab, et al. 2003) [7-8].

It is widely distributed as phytochemical plant components that play many environmental and physiological roles. Woody plants can synthesize and store a variety of phytochemicals in their cells, including alkaloids, flavonoids, tannins, cyanogenic, glycosides, phenolic compounds, saponins, lignins and lignans. Phytochemical variations show biological effects as a consequence of antioxidant properties. Various polyphenols (phenolic acid, hydrolyzable tannins, flavonoids) have anticarcinogenic and anti-mutagenic effects (Urugiaga and Leighton, 2000) [9].
Plants may contain bioactive chemicals that produce physical and biochemical functions in the human body. These bioactive components include alkaloids, tannins, flavonoids and phenolic compounds. Natural products from plants have received a lot of attention in recent years due to their wide range of pharmacological properties, including antioxidant and antitumor activity (Edeoja, et al. 2005) [10].

Solanum Nigrum L and *S. Seaforthianum* Andr. Plant for Primary Health Care Important aspects of medicinal plant resources. Black Night Shade is a decode weed of the Solanaceae family. It is a green, smooth, semi-climbing stalk 10-60 cm long. The whole organ is slightly ovate and diamond-shaped with slightly transverse leaves. It is common in wet forests, riverbanks, barren land, old land, roadside ditches and farmland.

Solanum seaforthianum Andr. It is a biannual herbaceous plant. It is 1-2 m tall with young parts. hirsute pilose or glandular hairy, stem with hooked, leaves opposite upto 22 cm long, ovate, acute, sinuate or pinnatifid and prickly on both surface, petiole prickly, flowers white in sessile or sub-sessile few flowered lateral cymes, berry globose, yellow when ripe. It is frequent to common along roadsides, river bund, in waste plus, infrequently in cultivated fields.

Several workers have studied the phytochemical constituents of different plant species from time to time in different parts of the world. Certain authors have reported phytochemical studies of *Solanum nigrum* L. (Ravi, et al. 2009 and Santhi & Nadanakunjidam, 2011) [11-12]. Other workers have worked on phytochemical constituents of different medicinal plants such as (Dash, et al. 2008; Parekh and Chanda, 2007; Prasad, et al. 2008; Periyasamy et al. 2010; Koche, et al. 2010 and Mallikharjuna, et al. 2007) [13-18]. The phytochemical studies of *Solanum nigrum* L and *Solanum seaforthianum* Andr. of Rewa district areas is so far limited. Therefore, an attempt was made to evaluate the phytochemical constituents of *Solanum nigrum* L and *Solanum seaforthianum* Andr. of Rewa districts in the present investigation.

Material and Methods

Plant Collection and Identification: Fresh samples of *Solanum nigrum* L and *S. seaforthianum* Andr. free from disease were collected from dry and shady areas of different localities of Chorhata, University campus and Govindgarh sites. The plant materials were identified as per method (Jain and Rao, 1976) [19] and herbarium deposited in Department of Botany, Govt. Science P.G. College, Rewa (M.P.).

Preparation of Plant Material: The leaves were washed thoroughly 2-3 times with running tap water, leaf material was then air dried under shade. After complete shade drying the plant material was ground in the mixer, the powder was kept in small plastic bags with proper labelling.

Extraction of Plant Material: Preparation of aqueous extracts: In the first grinded leaves materials of 5 gm weighed using an electronic balance & 5gm of plant material were crushed in 25 ml of sterile water, then heat at 50-60 c and it was filtered using Whatman filter paper no.1. then filtrate was centrifuged at 2500 rpm for 15 minutes & the filtrate was collected in sterile bottles and was stored by refrigeration at 5°C until use (Harborne, 1973) [20].

Preliminary Phytochemical Analysis: This was carried out according to the methods described by Trease and Evans (1989) [21]. Qualitative phytochemicals analysis of the crude powder of the *Solanum nigrum* L and *S. seaforthianum* Andr. for the tests of phytochemicals as a alkaloid, saponin, tannins, flavonoids and protein etc. (Oguyemi, 1979) [22] were made as shown below –

- **Test for Alkaloides:** 200 mg plant material were taken and added 10 ml Methanol and then filtered. After that 2 ml filtrate were taken and added 1% HCL with steam 1 ml filtrate and 6 drops Mayer’s reagent/Wagners reagent/ Dragendorffs reagent. It produced Creamish/Brown/Red/Orange precipitate indicate the presence of alkaloids.

- **Test for Saponins:** Approximate 0.5 ml filtered were taken and added 5 ml distilled water. Frothing persistence indicate presence of Saponins.

- **Test for Tannins:** 200 mg plant material were taken and added 10 ml distilled water and then filtered. After that 2 ml filtrate were taken and added 2 ml FeCl₃ Blue. Then black precipitate indicate the presence of Tannins & Phenols.

- **Test for Flavonoids:** 200 mg plant material were taken and added 10 ml Ethanol, then filtered. After that 2 ml filtrates were taken and added conc HCL and magnesium ribbon. Pink, Tomato, Red colour indicate the presence of Flavonoides, Glycoside.

- **Test for Protein:** Take 3-5 ml of the plant extract or filtrate and added few drops of Millons reagent and mix thoroughly and heat. White precipitate is formed and the precipitate turns brick red after boiling.

Results and Discussion

Following the analytical study, *Solanum Nigrum* L and *S. seaforthianum* Andr. shown in Tables 1 and 2.

Table 1 shows that the extract of *Solanum nigrum* L of study area is rich in tannins, while alkaloids, saponins, tannins and flavonoids are found in moderate amounts in the shades of 3 different sites. The results revealed that *Solanum nigrum* L leaf extract was rich in protein in relatively shady areas of arid regions of 3 study sites.

Table 1: Qualitative Phytochemical Screening of *Solanum nigrum* L of Rewa district (M.P.) India

<table>
<thead>
<tr>
<th>Name of the phytochemicals</th>
<th>Chorhata</th>
<th>University campus</th>
<th>Govindgarh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry area</td>
<td>Shady area</td>
<td>Dry area</td>
</tr>
<tr>
<td>Alkaloid</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Protein</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

Note Book: +++ = Abundant, ++ = moderately presence, + = present

Table 2, it was observed that saponin and tannins are abundant on leaf extract of *Solanum seaforthianum* Andr. in dry areas of University campus and Govindgarh study site than Chorhata one. On the other hand, alkaloid, flavonoids, proteins are moderately present in leaf extract of *Solanum seaforthianum* Andr. in dry areas of Chorhata, University...
used as basic agents to treat their

V. Review on some plant of Indian

rnal of Pharmaceutical Research, 2003,

C. In Glossary of

al Flavonoids reduce the risk of heart

-11.

Tannins have been reported to

frican

screening of Some Iranian Plants.

the active formula

International

medicinal properties shown by plants. For example,

different types of proteins are isolated from medicinal plants

and have been found to be effective against certain diseases

Tsao, et al. 1990) [26].

Phytochemical components for the treatment of various ailments / diseases such as cough, liver problem, stomach

ache, skin diseases, inflammation, jaundice, toothache have

dmedicinal properties of both species. Various workers

reported (Srivatasava & Nyihi, 2010 and Gogoi & Islam

2012) [27-28].

Table 2: Qualitative Phytochemical Screening of Solanum

seaforthianum Andr. of Rewa district (M.P. India

<table>
<thead>
<tr>
<th>Name of the phytochemicals</th>
<th>Chorhat University campus</th>
<th>Govindgarh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry area</td>
<td>Shady area</td>
</tr>
<tr>
<td>Alkaloid</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Protein</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: Book: +++ = Abundant, ++ = moderately presence, + = present

Quality assurance of phytochemical elements extracted from the leaf extract of Solanum nigrum L and S. seaforthianum Andr.

reveals the presence of alkaloids, saponin, tannins, flavonoids, proteins etc. Pure unmixed alkaloids and their

synthetic products are used as basic agents to treat their

alargesic, antispasmodic and bacterial effects (Okwu and Okwu, 2004) [25]. In the present study, the alkaloid content observed in Solanum nigrum L and S. seaforthianum Andr.

it may be responsible for their highly respected treatment rates even though the exact mechanism of action is not well

nderstood. Saponin is a special class of glycosides with

properties. It has the property of lowering and

renngthening red blood cells. Some of the properties of

aponin include the formation of forms in aqueous solution,

aemolytic activity, cholesterol-binding properties and

idity (Sodipo, et al. 2000) [24]. These structures offer high

therapeutic functions in the leaf structure from Solanum nigrum L and S. seaforthianum Andr. Tannins are also

own as an antibacterial agent. Tannins (more commonly

called tannic acid) are polyphenols dissolved in water

resent in many plant foods. Water-based tannins

yphenols reduce protein. Tannins have been reported to

hibit the development of microorganisms by depleting

small amounts of protein and making protein-rich ones

ccessible to them. The growth of many fungi, yeasts,

acteria and viruses was inhibited by tannins. Phytherapeutically plant-based tannin is used to treat

undiagnosed diarrhoea, inflammation of the mouth and

roat and slightly damaged skin (Westendary, 2006) [25]. In

this study, the presence of tannins may have caused a sharp

taste in both S.nigrum L and S. seaforthianum Andr. and it has been reported to speed up the healing of wounds and

flamed mucous membranes. Flavonoids are powerful

ater-soluble antioxidants and free radical scanners,

venting oxidant cell damage with strong anticancer activity. Intestinal Flavonoids reduce the risk of heart

disease. Like antioxidants, flavonoids from these plants

provide anti-inflammatory activity. This, in turn, may be the

reason Solanum nigrum L and S. seaforthianum Andr.

sed for the treatment of wounds, burns and ulcers in herbal

icine. In addition to these secondary metabolites, due to

the higher protein content in the leaf Solanum nigrum L than S. seaforthianum Andr. which can serve many of the

dmedicinal properties shown by plants. For example,