Kinetics of p-Nitrophenol adsorption from water by using montmorillonite clay

Dr. Anil Kumar Singh

Abstract
Montmorillonite clay is used to remove p-nitrophenol (PNP) from aqueous solution. Effect of contact time on the removal efficiency of PNP by montmorillonite clay is investigated the kinetics of the PNP removal by montmorillonite clay is in well agreement with the pseudo first order model. The mass transfer behaviour is due to the pore blockage and steric repulsive behaviour induce by adsorbed PNP on the mont morillonite surface.

Keywords: PNP, Montmorillonite clay, pseudo first order model, diffusion, adsorption

Introduction
The phenols and their derivatives especially p-nitro phenol are the most pollutants of natural water. Montmorillonite clay is used as adsorbent for wastewater treatment. Kinetics investigations of the montmorillonite clay are under taken in the present study. Pseudo first order and pseudo second order kinetics models are usually adopted in kinetics investigations. The pseudo first order equation is a simple kinetics process of liquid-solid phase adsorption. It was forwarded by Lagergress (1898). It’s non linear formula is given as follows

\[Q_T = Q_E (1-e^{-k_1t}) \]

Where \(k_1 \) is the rate constant of the pseudo first order adsorption (min\(^{-1}\)). Obviously, \(Q_E \) and \(K_1 \) can be figured out by plotting \(Q_T \) verses \(t \) by further non linear regression analysis. The pseudo second order model based on the adsorption equilbirium capacity may be expressed as the following linear form (HO and McKay 1999).

\[\frac{T}{Q_T} = \frac{T}{Q_E} + \frac{1}{k_2(Q_E)^2} \]

Where \(k_2 \) is the rate constant of pseudo second order adsorption [g/mg.min]. Obviously \(Q_E \) and \(k_2 \) can be determined experimentally by plotting \(T/Q_T \) verses \(T \).

Materials and Methods
The montmorillonite clay is used in the present work. It was powdered to particles of size less than 50 micro metre. montmorillonite clay was prepared by washing several times with distilled water to clean the soluble.

Chemicals: PNP, HCl, NaOH, Na\(_2\)SO\(_4\), NaHCO\(_3\), Na\(_2\)HPO\(_4\), NaCl etc.

Characterisation Techniques
X-Ray diffraction (XRD) patterns were conducted using a siemens D5000 diffractometer using Cu -kalpha radiation (Cu- K alpha =1.5418 A) with the scanning step of 0.04 degree speed of XRD analysis of 5s/ste. Fourier transform infrared (FTIR) spectra were measured using a thermo scientific Nicolet iS10 spectrometer with the resolution of 4 cm\(^{-1}\), in the range of 400=4000 cm\(^{-1}\).
Adsorption Experiments
Adsorption tests were conducted using both system. A certain amount of adsorbent was included into 50 ml of PNP solution at desired concentrations. The removal efficiency and adsorption capacity at equilibrium were calculated as follows:

% removal = \((C_0 - C_E) \times 100 / C_0\)

\(q (mg/g) = (C_0 - C_E) \times V / m\)

where \(C_0\) and \(C_E\) are initial and equilibrium concentrations of BNP in mg/l respectively. \(m(g)\) is the amount of adsorbent and \(V (l)\) is the volume of solution.

Results and Discussion
Characterisation of the Adsorbent

The phase and crystallinity of montmorillonite clay were determined by XRD measurement (fig 1). At 2 theta = 6.68 degree, the base spacing (d_{001}) is 1.32 nm. The diffraction peaks at 2 theta = 19.61, 27.92, 35.09 and 60.2 were corresponding to the main mineral component of montmorillonite (standkovic et al. 2011) fig 1.

Effect of Contact Time

The effect of contact time on the PNP removal by montmorillonite clay was investigated in the time range 0-240 min to determine the equilibrium time of adsorption. The results are illustrated in fig 2.

Adsorption Kinetics

The experimental kinetic data of PNP adsorption on the montmorillonite clay were analysed by pseudo first order and pseudo second order model. The non linear regression analysis of kinetic data is represented in fig 3. Kinetic parameters are tabulated in table 1. \(q_e (mg/g)\) and \(q_t (mg/g)\) are respectively adsorbed amounts of PNP at equilibrium and time \(t (min)\). \(k_1 (min^{-1})\) and \(K_2 (g/mg.min)\) are first order and 2nd order rate constants respectively. Based on the results and comparing the \(R^2\) factor the kinetics of the PNP removal by montmorillonite clay is agreement with pseudo first order model.
Fig 3: (a) pseudo first order (b) pseudo 2nd order.

Table 1: Kinetic model parameters for PNP adsorption on the montmorillonite clay

<table>
<thead>
<tr>
<th>Kinetic models</th>
<th>Equations</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-first-order</td>
<td>$q_t = q_e (1-e^{-kt})$</td>
<td>q_e (mg/g) 12.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k_1 (min$^{-1}$) 0.028</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R^2 0.995</td>
</tr>
<tr>
<td>Pseudo-second-order</td>
<td>$q_t = \frac{q_e k_t^t}{1+q_e k_t}$</td>
<td>q_e (mg/g) 15.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k_2 (g/mg min) 0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R^2 0.988</td>
</tr>
<tr>
<td>Intraparticle diffusion</td>
<td>$q_t = k_{int} t^{1/2} + C$</td>
<td>k_{int1} (mg/g min$^{1/2}$) 1.380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k_{int2} (mg/g min$^{1/2}$) 0.093</td>
</tr>
</tbody>
</table>

Conclusion

The removal of PNP by montmorillonite clay from aqueous solutions was carried out in a batch system. PNP adsorption on the montmorillonite clay were analysed by the pseudo first order and pseudo second order models. The mass transfer behaviour may be due to the pore blockage and steric repulsive barrier induced by adsorbed PNP on the montmorillonite clay surface.

Acknowledgements

I wish to thanks very warmly my research supervisor Dr. Bikang Ram, associate professor, department of chemistry, Women’s College, Samastipur whose skill, dedication and enthusiasm, allowed the work described here to be realized.

References