

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 8.4 IJAR 2020; 6(10): 1105-1109 www.allresearchjournal.com Received: 22-08-2020 Accepted: 29-09-2020

MM Chopade

Assistant Professor, Mumbai veterinary College, Parel, Mumbai, Maharashtra, India

BS Katkade

Mumbai Veterinary College, Parel, Mumbai, Maharashtra, India

SJ Komatwar

Mumbai Veterinary College, Parel, Mumbai, Maharashtra, India

VD Pawar

Mumbai Veterinary College, Parel, Mumbai, Maharashtra, India

SB Khade

Mumbai Veterinary College, Parel, Mumbai, Maharashtra, India

Corresponding Author: MM Chopade Assistant Professor, Mumbai veterinary College, Parel, Mumbai, Maharashtra, India

Evaluation of Frieswal sires for lifetime milk yield

MM Chopade, BS Katkade, SJ Komatwar, VD Pawar and SB Khade

Abstract

The data on Holstein Friesian x Sahiwal cows maintained at Military Dairy Farm, Pimpri, Pune (Maharashtra) were collected for the present study. A total of 9094 lactation records belonging to 3425 Frieswal cows born to 239 sires were collected. The data available from various records viz. pedigree register, history sheets, lactation register, dry cow register and disposal register were collected and compiled. The data were standardized by removing the sires with less than five progenies. The breeding values of the top 15 sires were predicted up to first three lactations on the basis of daughter's performance by using Best Linear Unbiased Prediction (BLUP) as given by Henderson (1976). It was observed that overall mean (μ) for breeding value of sires up to three lactations predicted using BLUP was 9530.12± 99.89 kg. The sire DEVTA was ranked first on the basis of breeding values estimated by BLUP on the basis of daughter's performance (11061.89 ± 938.8 kg) whereas lowest predicted breeding value of sires up to five lactations predicted using BLUP was 16538.28 ± 195.22 kg. It was observed that the predicted breeding value of sire DEVTA was highest while the breeding value of sire SPAM was lowest amongst all sires studied.

Keywords: Frieswal sires, BLUP, breeding value

Introduction

India is one of the world's largest milk-producing countries, and milk is an important part of the Indian diet. The dairy sector in India is largely dominated by small-scale farmers, and milk production has been increasing steadily in recent years. According to the latest data from the Ministry of Agriculture and Farmers' Welfare, the total milk production in India during 2020-21 was 208.43 million tonnes, which is an increase of 6.5% from the previous year. The average milk yield per animal per day was 3.05 kg, which is an improvement from the previous year's average of 2.93 kg. Dairy sector an important sector of the Indian economy as it contributed about 20 % to the total GDP first time in the last 17 years during 2020-21 (Economic survey of India 2020-2021). The sires plays very important role in milk production by contributing high yielding daughters in the flock. In this context, estimation of breeding values is important in cattle breeding as it allows breeders to select the best sires for producing the next generation of animals. Breeding values are estimates of the genetic merit of an animal for a particular trait, such as milk production or meat quality. By estimating the breeding values of sires, breeders can identify the animals that are likely to produce offspring with desirable traits. By selecting sires with high breeding values for desirable traits, breeders can improve the overall quality of their herd and increase productivity. For example, selecting sires with high breeding values for milk production can increase the milk yield of the herd, while selecting sires with high breeding values for meat quality can improve the quality of the meat produced by the herd. Considering the fact the present investigation is carried out to estimate the breeding values of sires and ranking them as per their performance.

Materials and Method

All available data on Holstein Friesian x Sahiwal cows maintained at Military Dairy Farm, Pimpri, Pune (Maharashtra) were collected for the present study. A total of 9094 lactation records belonging to 3425 Frieswal cows born to 239 sires were collected.

The data available from various records viz. pedigree register, history sheets, lactation register, dry cow register and disposal register were collected and compiled. The information included was on animal ID, name, date of birth, sire ID and name, dam ID and name, grand sire ID and name, grand dam ID and name, calving and lactation data along with disease and immunization records. Similarly, the record on date of birth, date of calving, date of drying and date of death along with reason of death was also noted. Based on this information, age at first calving, dry period, and inter-calving periods were estimated. The sires with less than five progenies were omitted from the study. The lifetime milk yield was divided into lifetime milk yield up to three and five lactations. The data were tested for normal distribution using PROC UNIVARIATE, of SAS9.13. If the data were found to be deviating from normal distribution then appropriate transformation viz., log transformation, square root transformation, deleting the outliers and others was carried. The descriptive statistics viz., number of observation, minimum, maximum, mean, standard errors and coefficient of variation (CV) were estimated using PROC MEAN procedure of SAS 9.13 for different traits. The Genetic parameters of sires were estimated by average information Restricted Maximum Likelihood (AIREML) programme developed by Gilmour (1995) using animal model.

Y = Xb + Zu + e

Denote the linear model of analysis for q trait with y vector of N observations for the trait; b the vector of fixed effects; x the incidence or design matrix for fixed effects; u the vector of all random effects fitted; Z the incidence matrix for random effects; and e the vector of N random residual errors. Assumption: V (u) =G, V (e) = R and Cov (u, e) = 0 With the likelihood maximized was

 $Log L = -1/2[constant + log | v | + log |X*V-1X* |+(y - x\hat{b})v-1'(y-x\hat{b})]$

The Genetic Parameters were estimated by AIREML computer programme using a bivariate model.

Results and Discussions

The estimated breeding values of sires for lifetime milk yield up to three lactations by using the BLUP is presented in table 1. Total eighty one sires were evaluated for their milk performance. It was observed that the average breeding values of sires up to first three lactations was 9530.125 \pm 99.89 Kg. There were almost more than twenty sires with breeding values more than 10000 Kg indicating that the flock is well maintained and the pedigree record is kept in well manner.

Table 1: Estimated breeding values of sires using BLUP and various prediction models up to three lactations

Sr. No.	Sire	Breeding values of sires estimated using BLUP
1	μ	9530.125 ± 99.89
2	001KARAN	9886.81 ± 883.03
3	009HARISH	9801.92 ± 949.09
4	04TYSON	9507.7 ± 784.87
5	112ADARSH	8075.85 ± 919.43
6	114HONDA	10970.51 ± 973.58
7	126LION	9285.48 ± 766.14
8	132NAZIR	9922.13 ± 1191
9	161ALOK	9262.02 ± 853.52
10	173LOHAN	9806.37 ± 628.23
11	179GAGAN	8060.16 ± 709.31
12	243HAZAR	10076.13 ± 1112
13	301SHIVA	8859.13 ± 1038
14	32FAIZ	8682.13 ± 1026
15	572LORD	10612.51 ± 926.18
16	477BAAZ	9584.1 ± 868.51
17	519HIRA	8351.62 ± 970.21
18	548COBRA	9953.02 ± 759.46
19	551HARI	9491.52 ± 566.95
20	638GAJRAJ	10157.82 ± 956.3
21	652MADHAV	8884.13 ± 1161
22	693JATIN	9185.07 ± 869.1
23	698HASP	9461.31 ± 713.03
24	871HIPPY	8779.15 ± 601.23
25	921LOTAN	8209.35 ± 771.6
26	987TYSON	7653.25 ± 625.53
27	ANGAR	8825.71 ± 984.68
28	BAAZ	10089.13 ± 1042
29	BHARAT	9731.13 ± 1110
30	CJH339TORA	11061.4 ± 769.66
31	CLK332ANKIT	10271.87 ± 547.88
32	CLK347RAM	9515.84 ± 614.11
33	CLK399HARSH	9566.99 ± 916.49
34	CMO609INDIA	10253.77 ± 915.27
35	CMT318SAJAN	10394.81 ± 971.75
36	CMT337JASBIR	10963.76 ± 668.71
37	CMT398SETH	9928.92 ± 976.08

38	CMT516PURAN	9422.2 ± 519.38
39	CMT525NAHAR	8720.13 ± 1110
40	CMT548MADHOSH	9545.97 ± 688.73
40	CMT619MITU	9610.45 ± 708.29
41	CMT633BALWAN	10374.11 ± 948.15
42	CMT634ZUMKA	8594.13 ± 995.63
43	CMT678UTTRA	
44	CNK574RONAK	$\frac{8518.13 \pm 816.79}{10158.87 \pm 568.36}$
-		
46 47	DEVTA	11061.89 ± 938.8
	HEERA	9853.03 ± 759.49
48	HF	10514.2 ± 802.58
49	HF05	9206.13 ± 1074
50	HF104	7721.98 ± 711.97
51	HF117	10521.45 ± 941.76
52	HF13	9697.13 ± 1071
53	HF15	7784.13 ± 1007
54	HF305	7448.42 ± 910.15
55	HF3124	10314.7 ± 807.49
56	HF769	9809.13 ± 1034
57	HF99	9908.13 ± 1070
58	HFADIL	9722.13 ± 1018
59	KANWAR	8142.13 ± 1074
60	KARAN	10262.4 ± 998.82
61	NJM683NATA	9516.13 ± 1211
62	NPK341SHYAM	9835.89 ± 570.22
63	NPK430SHIV	10619.31 ± 819.25
64	PETERSON	10066.89 ± 869.48
65	SARTAJ	10663.13 ± 1034
66	SPAM	6724.92 ± 923.47
67	SW125	9129.72 ± 997.38
68	WAM211MANGU	10536.37 ± 617.3
69	WAM331KENU	10794.18 ± 854.32
70	WAM331SARWAN	10757.34 ± 919.88
71	WAM332DEEPAK	9137.81 ± 755.12
72	WAM417MAHI	10071.23 ± 650.59
73	265SALVI	10410.87 ± 441.33
74	CJH386GYAN	9158.26 ± 571.95
75	WAM445OM	10464.28 ± 747.68
76	WAM540FORN	9794.33 ± 732.02
77	WAM560MONTY	10808.32 ± 839.15
78	WAM569BOXER	9935.9 ± 995.74
79	WAM675LOZER	9305.57 ± 708.61
80	WJR267FLORA	9299.59 ± 749.57
81	WJR984KANS	9723.78 ± 809.81
<i></i>		

The sire Devta was ranked first on the basis of breeding values estimated by BLUP on the basis of daughter's performance (11061.89 \pm 938.8 kg) whereas lowest predicted breeding value was recorded for sire SPAM (6724.92 \pm 923.47). Contrary to the present findings the lower estimates of breeding value were reported by Lodhi *et al.* (2016) ^[4], Singh and Singh (2016) ^[5], Dongre (2012) ^[2],

Bajetha and Singh (2015)^[1] and Kumar *et al.* (2008)^[3] reported lower estimates of breeding value for first lactation in different breeds of cattle.

The breeding values were also estimated by considering the lifetime milk yield up to five lactations and presented in table 2.

Table 2: Estimated breeding values of sires using BLUP and various prediction models up to five lactations

Sr. No.	Sire	BV5±SE
1	μ	16538.28 ± 195.22
2	001KARAN	16791.28 ± 1535
3	009HARISH	16208.13 ± 1665
4	04TYSON	15945.18 ± 1392
5	112ADARSH	15551.24 ± 1705
6	114HONDA	19086.47 ± 1678
7	126LION	16125.12 ± 1468
8	132NAZIR	17390.23 ± 2009
9	161ALOK	16575.43 ± 1721
10	173LOHAN	15863.12 ± 1629
11	179GAGAN	18436.19 ± 1154
12	243HAZAR	15334.09 ± 1302

13 301SHIVA 15611.17 ± 1798 14 32FAIZ 16851.17 ± 1788 15 572LORD 17459.28 ± 1587 16 477BAAZ 17472.87 ± 1568 17 519HIRA 15307.13 ± 1712 18 548COBRA 17555.20 ± 1425 19 551HARI 16728.28 ± 1062 20 638GAJRAJ 16744.23 ± 1653 21 652MADHAV 14359.34 ± 1712 22 693JATIN 16085.13 ± 1502 23 698HASP 16255.51 099 25 921LOTAN 14990.81 ± 1448 26 9871YSON 13807.14 ± 1253 27 ANGAR 15173.78 ± 1789 28 BAAZ 1776.787 ± 1799 29 BHARAT 16418.12 ± 2014 30 CJK337DRA 17420.21 ± 2134 31 CLK332ANKIT 1583.64 ± 1535 32 CLK347RAM 16438.12 ± 2014 33 CLK399HARSH 16538.20 ± 2253 34 CM0609INDIA 16538.20 ± 2253	
15 572LORD 17459.28 ± 1587 16 477BAAZ 17472.87 ± 1568 17 519HIRA 15307.13 ± 1712 18 548COBRA 17555.20 ± 1425 19 551HARI 16724.28 ± 1062 20 638GAJRAJ 16744.23 ± 1653 21 652MADHAV 14359.34 ± 1712 22 693JATIN 16085.13 ± 1502 23 698HASP 16255.47 ± 1355 24 871HIPPY 14673.55 ± 1099 25 921LOTAN 14990.81 ± 1448 26 987TYSON 13807.14 ± 1253 27 ANGAR 15173.78 ± 1799 28 BAAZ 17767.87 ± 1799 29 BHARAT 16418.12 ± 2014 30 CJK332ANKIT 15836.46 ± 1533 32 CLK347RAM 16463.15 ± 1526 33 CLK399HARSH 16538.20 ± 2253 34 CM0609INDIA 16538.46 ± 2253 35 CMT337JASBIR 18127.24 ± 1675 37 CMT398SETH 16538.16 ± 22	
16 477BAAZ 17472.87 ± 1568 17 519HIRA 15307.13 ± 1712 18 548COBRA 17555.20 ± 1425 19 551HARI 16728.28 ± 1062 20 638GAIRAJ 16744.23 ± 1653 21 652MADHAV 14359.34 ± 1712 22 693JATIN 16085.13 ± 1502 23 698HASP 16255.47 ± 1355 24 871HIPY 146035.55 ± 1099 25 921LOTAN 14990.81 ± 1448 26 987TYSON 13807.14 ± 1233 27 ANGAR 15173.78 ± 1785 28 BAAZ 17767.81 ± 799 29 BHARAT 16418.12 ± 2014 30 CJH339TORA 17420.21 ± 2134 31 CLK347RAM 16463.15 ± 1526 32 CLK347RAM 16463.15 ± 1526 33 CLK399HARSH 16538.21 ± 2134 36 CMT318SAJAN 15632.11 ± 2134 36 CMT318SAJAN 15638.16 ± 2253 37 CMT398SETH 16538.16 ± 225	
17 \$19HIRA 15307.13 ± 1712 18 548COBRA 17555.20 ± 1425 19 \$51HARI 16728.28 ± 1062 20 638GAIRAJ 16744.23 ± 1653 21 652MADHAV 14359.34 ± 1712 22 693JATIN 16055.13 ± 1502 23 698HASP 16255.47 ± 1355 24 871HIPPY 14673.55 ± 1099 25 921LOTAN 1490.81 ± 1448 26 98TYSON 13807.14 ± 1253 27 ANGAR 15173.78 ± 1785 28 BAAZ 17767.87 ± 1799 29 BHARAT 16418.12 ± 2014 30 CH3397DRA 17420.21 ± 2134 31 CLK347RAM 1643.15 ± 1526 33 CLK399HARSH 16538.20 ± 2253 34 CMO609INDIA 16538.46 ± 2253 35 CMT318SAJAN 15633.21 ± 2134 36 CMT318NAIR 18127.42 ± 1675 37 CMT398SETH 16538.16 ± 2253 40 CMT634ZUMKA 16538.46 ± 2	
18 548COBRA 17555.20 ± 1425 19 551HARI 16728.28 ± 1062 20 638GAJRAJ 16728.28 ± 1063 21 652MADHAV 14359.34 ± 1712 22 693JATIN 16085.13 ± 1502 23 698HASP 1625.47 ± 1355 24 871HIPPY 14673.55 ± 1099 25 921LOTAN 14990.81 ± 1448 26 987TYSON 13807.14 ± 1253 27 ANGAR 15173.78 ± 1799 29 BHARAT 16418.12 ± 2014 30 CIH339TORA 17420.21 ± 2134 31 CLK347RAM 16463.15 ± 1526 32 CLK347RAM 16438.20 ± 2253 34 CMO609INDIA 16538.46 ± 2253 35 CMT398SETH 16538.16 ± 2253 36 CMT337JASBIR 18127.24 ± 1675 37 CMT398SETH 16538.16 ± 2253 40 CMT548MADHOSH 16947.21 ± 1294 41 CMT638LWAN 16538.26 ± 2253 42 CMT634ZUMKA <t< th=""><th></th></t<>	
19 551HARI 16728.28 ± 1062 20 638GAIRAJ 16744.23 ± 1653 21 652MADHAV 14339.34 ± 1712 22 693JATIN 16085.13 ± 1502 23 698HASP 16255.47 ± 1355 24 871HIPPY 14673.55 ± 1099 25 921LOTAN 14990.81 ± 1448 26 98TYSON 13807.14 ± 1233 27 ANGAR 15173.78 ± 1785 28 BAAZ 17767.87 ± 1799 29 BHARAT 16418.12 ± 2014 30 CJH339TORA 17420.1 ± 2134 31 CLK32ANKIT 15836.46 ± 1535 32 CLK347RAM 16631.5 ± 1526 33 CLK39PHARSH 16538.20 ± 2253 34 CMO609INDIA 16538.46 ± 2253 35 CMT318SAJAN 15633.21 ± 2134 36 CMT373ASBIR 18127.24 ± 1673 37 CMT398SETH 16538.46 ± 2253 38 CMT516PURAN 15929.87 ± 1127 39 CMT52NAHAR 16538	
20 638GAJRAJ 16744.23 ± 1653 21 652MADHAV 14359.34 ± 1712 22 693JATIN 16085.13 ± 1502 23 698HASP 16255.47 ± 1355 24 871HIPPY 14673.55 ± 1099 25 921LOTAN 14990.81 ± 1448 26 987TYSON 13807.14 ± 1253 27 ANGAR 15173.78 ± 1785 28 BAAZ 17767.87 ± 1799 29 BHARAT 16418.12 ± 2014 30 CJH339TORA 17420.12 ± 2134 31 CLK332ANKIT 15836.46 ± 1535 32 CLK347RAM 16638.04 ± 2533 33 CLK399HARSH 16538.20 ± 2253 34 CMG0609INDIA 16538.46 ± 2253 35 CMT318SAJAN 15633.21 ± 2134 36 CMT317JASBIR 18127.24 ± 1675 37 CMT398ETH 16538.46 ± 2253 36 CMT516PURAN 15929.87 ± 1127 39 CMT525NAHAR 16538.74 ± 2253 40 CMT63BALWAN	
21 652MADHAV 14359.34 ± 1712 22 693JATIN 16085.13 ± 1502 23 698HASP 16255.47 ± 1355 24 871HIPPY 14673.55 ± 1099 25 921LOTAN 14990.81 ± 1448 26 987TYSON 13807.14 ± 1253 27 ANGAR 15173.78 ± 1785 28 BAAZ 17767.87 ± 1799 29 BHARAT 16418.12 ± 2014 30 CJH339TORA 17420.21 ± 2134 31 CLK32ANKIT 15836.46 ± 1535 32 CLK347RAM 16463.15 ± 1526 33 CLK399HARSH 16538.20 ± 2253 34 CM0609INDIA 16538.46 ± 2253 35 CMT318SAJAN 15633.21 ± 2134 36 CMT37JASBIR 18127.24 ± 1675 37 CMT398SETH 16538.46 ± 2253 38 CMT516PURAN 15929.87 ± 1127 39 CMT548MADHOSH 16947.21 ± 1294 40 CMT548MADHOSH 16943.24 ± 2253 44 CMT633BALWAN	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
25 921LOTAN 14990.81 ± 1448 26 987TYSON 13807.14 ± 1253 27 ANGAR 15173.78 ± 1785 28 BAAZ 17767.87 ± 1799 29 BHARAT 16418.12 ± 2014 30 CJH339TORA 17420.21 ± 2134 31 CLK332ANKIT 15836.46 ± 1535 32 CLK347RAM 16643.15 ± 1526 33 CLK399HARSH 16538.20 ± 2253 34 CMO609INDIA 16538.46 ± 2253 35 CMT318SAJAN 15633.21 ± 2134 36 CMT317JASBIR 18127.24 ± 1675 37 CMT398SETH 16538.46 ± 2253 38 CMT516PURAN 15929.87 ± 1127 39 CMT525NAHAR 16538.46 ± 2253 40 CMT548MADHOSH 16947.21 ± 1294 41 CMT619MITU 16538.76 ± 2253 42 CMT63BALWAN 16538.91 ± 2253 43 CMT634ZUMKA 16538.65 ± 2253 44 CMT678UTTRA 16538.24 ± 2253 45 CNK574RON	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
27 ANGAR 15173.78 ± 1785 28 BAAZ 17767.87 ± 1799 29 BHARAT 16418.12 ± 2014 30 CJH339TORA 17420.21 ± 2134 31 CLK332ANKIT 15836.46 ± 1535 32 CLK347RAM 16463.15 ± 1526 33 CLK399HARSH 16538.20 ± 2253 34 CM0609INDIA 16538.20 ± 2253 35 CMT318SAJAN 15633.21 ± 2134 36 CMT37JASBIR 18127.24 ± 1675 37 CMT398ETH 16538.16 ± 2253 38 CMT516PURAN 1592.87 ± 1127 39 CMT52SNAHAR 16538.46 ± 2253 40 CMT548MADHOSH 16947.21 ± 1294 41 CMT619MITU 16538.78 ± 2253 42 CMT63BALWAN 16538.26 ± 2253 43 CMT678UTTRA 16538.26 ± 2253 44 CMT678UTTRA 16538.26 ± 2253 45 CNK574RONAK 16538.26 ± 2253 46 DEVTA 19639.07 ± 1720 47 HEERA	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
35CMT318SAJAN 15633.21 ± 2134 36CMT337JASBIR 18127.24 ± 1675 37CMT398SETH 16538.16 ± 2253 38CMT516PURAN 15929.87 ± 1127 39CMT525NAHAR 16538.46 ± 2253 40CMT548MADHOSH 16947.21 ± 1294 41CMT619MITU 16538.78 ± 2253 42CMT633BALWAN 16538.91 ± 2253 43CMT634ZUMKA 16538.56 ± 2253 44CMT678UTRA 16538.24 ± 2253 45CNK574RONAK 16538.26 ± 2253 46DEVTA 19639.07 ± 1720 47HEERA 16137.42 ± 1363 48HF 19552.08 ± 1429 49HF104 14103.45 ± 1265 51HF117 19114.37 ± 1679 52HF13 17610.46 ± 1859 53HF15 15157.93 ± 1734 54HF305 13274.28 ± 1518 55HF769 16028.25 ± 2032 57HF99 16241.14 ± 1859	
36CMT337JASBIR 18127.24 ± 1675 37CMT398SETH 16538.16 ± 2253 38CMT516PURAN 15929.87 ± 1127 39CMT525NAHAR 16538.46 ± 2253 40CMT548MADHOSH 16947.21 ± 1294 41CMT619MITU 16538.78 ± 2253 42CMT633BALWAN 16538.91 ± 2253 43CMT634ZUMKA 16538.56 ± 2253 44CMT678UTTRA 16538.24 ± 2253 45CNK574RONAK 16538.26 ± 2253 46DEVTA 19639.07 ± 1720 47HEERA 16137.42 ± 1363 48HF 19552.08 ± 1429 49HF104 14103.45 ± 1265 51HF117 19114.37 ± 1679 52HF13 17610.46 ± 1859 53HF15 15157.93 ± 1734 54HF305 13274.28 ± 1518 55HF3124 17536.11 ± 1628 56HF769 16028.25 ± 2032 57HF99 16241.14 ± 1859	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c }\hline 54 & HF305 & 13274.28 \pm 1518 \\ \hline 55 & HF3124 & 17536.11 \pm 1628 \\ \hline 56 & HF769 & 16028.25 \pm 2032 \\ \hline 57 & HF99 & 16241.14 \pm 1859 \\ \hline \end{array}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
57 HF99 16241.14 ± 1859	
1000000000000000000000000000000000000	
58 HFADIL 16499.26 ± 1860	
59 KANWAR 14822.64 ± 1867	
60 KARAN 18793.67 ± 1726	
61 NJM683NATA 16538.12 ± 2253	
62 NPK341SHYAM 16609.30 ± 1337	
63 NPK430SHIV 17158.78 ± 1933	
64 PETERSON 18598.82 ± 1662	
65 SARTAJ 19618.44 ± 1727	
66 SPAM 12693.28 ± 1549	
67 SW125 16538.14 ± 2253	
68 WAM211MANGU 18586.47±1269	
69 WAM331KENU 17795.93±1624	
70 WAM331SARWAN 16585.32 ± 1856	
71 WAM32DEEPAK 15906.09 ± 1667	
72 WAM417MAHI 15300.05 ± 1007 72 WAM417MAHI 17373.45 ± 1495	
73 265SALVI 19377.28 ± 965.3	
73 2033/12/1 13377.20 ± 905.3 74 CJH386GYAN 16709.25 ± 1490	
75 WAM4450M 17510.36 ± 1794	
75 WAM4450M 17510.30 ± 1794 76 WAM540FORN 16785.43 ± 1611	
70 WAM540FORN 10703.43 \pm 1011 77 WAM560MONTY 17684.67 \pm 1528	
77 WAM500MONTT 17064.07 ± 1528 78 WAM569BOXER 16538.46 ± 2253	
79 WAM675LOZER 16824.24 ± 1424 90 WIP267ELORA 14562.47 ± 1606	
80 WJR267FLORA 14563.47 ± 1606	
81 WJR984KANS 16279.10 ± 1493	

The overall mean (μ) for breeding value of sires up to five lactations predicted using BLUP was 16538.28 ± 195.22 kg. It was observed that the predicted breeding value of sire DEVTA was highest while the breeding value of sire SPAM was lowest amongst all sires studied. Similar results were reported by Lodhi *et al* (2016) ^[4] in crossbred cattle. However, the contradictory results were reported by Singh and Singh (2016) ^[5], Dongre (2012) ^[2], Bajetha and Singh (2015) ^[1] and Kumar *et al.* (2008) ^[3] reported lower estimates of breeding value for first lactation in different breeds of cattle.

Conclusion

The present study indicated that the breeding value of sire estimated using BLUP for lifetime milk yield up to three lactations and lifetime milk yield up to five lactations was highest for the sire DEVTA and lowest for the sire SPAM. So the sire DEVTA was the superior to all the other sires studied in the present investigation.

Acknowledgement

We are thankful to Lt.Col, Military Dairy Farm, Pimpri, Pune, Maharashtra state of India for providing data on various production parameters. We also thanks to the Director ICAR- CIFE and Principal Scientist, Dept of Fish Genetics and Biotechnology, ICAR-CIFE, Varsova, Mumbai for providing computer laboratory facilities and technical guidance. Similarly, we are thankful to Mr. Nitin Patil for developing the software for data collection.

References

- 1. Bajetha G, Singh CV. Efficiency of different sire evaluation methods to improve lifetime production traits in crossbred cattle. Livestock Research International. 2015;3(3):64-70.
- 2. Dongre VB, Gandhi RS, Singh A, Ruhil AP. Comparative efficiency of artificial neural networks and multiple linear regression analysis for prediction of first lactation 305-day milk yield in Sahiwal cattle. Livestock Science. 2012;147:192-197.
- Kumar A, Gandhi RS, Singh A, Haile A. Comparison of animal model with other conventional methods of sire evaluation for milk production in Karan Fries cattle. Indian Journal of Animal Sciences. 2008;78(12):1393-96.
- 4. Lodhi G, Singh CV, Barwal RS, Shahi BN. Genetic and phenotypic parameters of first lactation and life time traits in crossbred cattle. International Journal of Agricultural Policy and Research. 2016;4(8):143-148.
- Singh J, Singh CV. Genetic and phenotypic parameters of first lactation and lifetime traits in Sahiwal Cows. Journal of Veterinary Science and Technology. 2016;7(4):345.