

ISSN Print: 2394-7500
ISSN Online: 2394-5869
Impact Factor: 8.4 IJAR 2023; 9(1): 455-456 www.allresearchjournal.com
Received: 26-11-2022
Accepted: 30-12-2022
Dr. Md. Alam
Assistant Professor, Department of Mathematics, R.K. College, Madhubani, Bihar, India

Corresponding Author:

Dr. Md. Alam
Assistant Professor,
Department of Mathematics, R.K. College, Madhubani, Bihar, India

Analysis of reverse order Law for k-EP matrices

Dr. Md. Alam

Abstract

In general $(A B)^{t} \neq B^{t} A^{t}$, for any two matrices A and B. We say that reverse order law holds for MorePenrose inverse of the product of A and B, if $(A B)^{t}=B^{t} A^{t}$ The main objective in this paper We discussed, the necessary and sufficient conditions for the reverse order law $(A B)^{t}=B^{t} A^{t}$ to be hold for a pair of $k-E P$, matrices and B.

Keywords: Matrices, penrose inverse, AXA=A

Introduction

Let $C_{n \times n}$ be the space of $n_{\times} n$ complex matrices of order n. Let C_{n} be the space of complex n tuples. For $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ let $\mathrm{A}^{\mathrm{T}}, \mathrm{A}^{*}, \mathrm{~A}^{t}, \mathrm{R}(\mathrm{A})$ and $\rho(\mathrm{A})$ denote the transpose conjugate transpose, Moore-Penrose inverse, range space, null space and rank of A respectively. A solution X of the equation $A X A=A$ is denoted by A. A matrix $A \in C_{n \times n}$ is said to be $E P$, if $N(A)=N\left(A^{*}\right)$ or $R(A)=R\left(A^{*}\right)$ and $\rho(A)=r$ Throughout let ' k ' be fixed product of disjoint transposition in $S_{n}=\{1,2 \ldots . n)$ and ' K ' be the associated permutation matrix. A matrix $A=\left(\alpha_{i j}\right) \in C_{n \times n}$ is $k-$ hermitian if $\alpha_{\mathrm{ij}}=\alpha \mathrm{k}(\mathrm{j}), \mathrm{k}(\mathrm{i})$ for $\mathrm{j}=1, \ldots \mathrm{n}$. A theory for k -hermitian matrices is developed in ${ }^{[2]}$. For $x=\left(x_{1^{\prime}, ~} \mathrm{X}_{2}, \ldots \ldots \ldots \ldots . \mathrm{X}_{\mathrm{n}}\right)^{\mathrm{T}} \in \mathrm{C}_{\mathrm{n}}$. Let $\mathrm{K}(\mathrm{X})=\left(\mathrm{X}_{\mathrm{k}(1)^{\prime}} \mathrm{X}_{\mathrm{k}(2)}, \ldots \ldots \ldots \ldots . \mathrm{X}_{\mathrm{k}(\mathrm{n})}\right)^{\mathrm{T}} \in \mathrm{C}_{\mathrm{n}}$. Let $K(X)=\left(X_{k(1)} X_{k(2)}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{X}_{(n)}{ }^{\mathrm{T}} \in \mathrm{C}_{\mathrm{n}}\right.$. A matrix $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ is said to be k -EP if it satisfies the condition $A x=0 \Leftrightarrow A * K(X)=0$ (or) equivalently $N(A) N(A * K)$ (or) $R(A)=$ $R(K A *)$ Moreover, A is said to be $k-E P$, if A is $k-E P$ and $\rho(A)=r$ further properties of $k-E P$ matrices one may refer ${ }^{[3]}$. In ${ }^{[4]}$ it is shown that if A, B and AB are $E p_{\mathrm{r}}$ matrices then AB, BA $A^{t} B^{t}$ are all k-EP, matrices.
In this paper, necessary and sufficient condition for the reverse order law $(A B)^{t}=B^{t} A^{t}$ to be hold for an $\mathrm{k}-\mathrm{EP}$, matrices A and B are discussed.

Reverse Order Law for-EPr Matrices

For any two singular matrices $A, B \propto C_{n \times n}(A B)^{-1}=B^{-1} A^{-1}$ holds. However, it is not true generalized inverse of matrices. In general $(A B)^{t} \neq B^{t} A^{t}$ for any two matrices A and B. For example,

$$
\mathrm{A}=[1,0], \mathrm{B}=\binom{1}{1}, \quad \mathrm{AB}=[1]
$$

$(A B)^{t}={ }^{[1]} . B^{t} A^{t} \neq(A B)^{t}$. It is well known that $(p .181,[I]),(A B)^{t}=B^{t} A^{t}$ if any only if, $R\left(B B^{*}\right.$ $\left.A^{*}\right) \subseteq R\left(A^{*}\right)$ and $R(A * A B) \subseteq R(B)$.

Theorem 2.1: If A, B are $k-E P_{r}$ Matrices with $R(A)=R\left(B^{*}\right)$ then $(A B)^{t}=B^{t} A^{t}$.
Proof: Since A is $k-E P_{r^{\prime}} R(A)=R\left(K A^{*}\right)$
$\Rightarrow \mathrm{R}\left(\mathrm{B}^{*}\right)=\mathrm{R}\left(\mathrm{KA}^{*}\right)$ (By hypothesis)
$\Rightarrow R(K B)=R(K A *)$ (Since Bis k-EP)
$\Rightarrow R(B)=R\left(A^{*}\right)($ Since $R(K A)=R(K B)$
$\Rightarrow R(A)=R(B))$
$\Rightarrow \mathrm{R}(\mathrm{B})=\mathrm{R}\left(\mathrm{A}^{\mathrm{t}}\right)\left(\mathrm{By}^{[1]}, \mathrm{R}\left(\mathrm{A}^{*}\right)=\mathrm{R}\left(\mathrm{A}^{\mathrm{t}}\right)\right)$

Now, in order to prove $(A B)^{t}=B^{t} A^{t}$, it is enough if we prove that $B^{t} A^{t}$ satisfies the difining four equation of the Moore-Penrose inverse, that is
$(\mathrm{AB})\left(\mathrm{B}^{t} \mathrm{~A}^{\mathrm{t}}\right) \mathrm{AB}=\mathrm{AB} \rightarrow(1)$
$\left(\mathrm{B}^{\mathrm{t}} \mathrm{A}^{\mathrm{t}}\right)(\mathrm{AB})\left(\mathrm{B}^{\mathrm{t}} \mathrm{A}^{\mathrm{t}}\right)=\left(\mathrm{B}^{\mathrm{t}} \mathrm{A}^{\mathrm{t}}\right) \rightarrow(2)$
$\left.\left[(\mathrm{AB})\left(\mathrm{B}^{\mathrm{t}} \mathrm{A}^{t}\right)\right]^{*}=(\mathrm{AB})\left(\mathrm{B}^{t} \mathrm{~A}^{t}\right)\right] \rightarrow$ (3)
$\left.\left[\left(\mathrm{B}^{\mathrm{t}} \mathrm{A}^{t}\right)(\mathrm{AB})\right]^{*}=\left(\mathrm{B}^{\mathrm{t}} \mathrm{A}^{t}\right)(\mathrm{AB})\right] \rightarrow$ (4)
Now, by ${ }^{[1]}, R(A)=(R B) \Leftrightarrow A A^{t}=B^{t}$
$\therefore \mathrm{R}\left(\mathrm{A}^{\mathrm{t}}\right)=\mathrm{R}(\mathrm{B}) \Rightarrow \mathrm{A}^{\mathrm{t}}\left(\mathrm{A}^{\mathrm{t}}\right)^{\mathrm{t}}=\mathrm{BB}^{\mathrm{t}}$
$\Rightarrow A^{t} \mathrm{~A}=\mathrm{BB}^{\mathrm{t}}$
Hence, $(A B)\left(B^{t} A^{t}\right)(A B)=A B B^{t}\left(A^{t} A\right) B$
$=\mathrm{AB}\left(\mathrm{B}^{t} \mathrm{BB}^{\mathrm{t}}\right) \mathrm{B}$
$=A\left(B^{t} B\right) B$
$=\mathrm{AB}$
$(A B)\left(B^{t} A^{t}\right)(A B)=A B$
Thus (1) is proved
Now, $\left(B^{t} A^{t}\right)(A B)\left(B^{t} A^{t}\right)=B^{t}\left(A^{t} A\right) B B^{t} A^{t}$
$=\left(\mathrm{B}^{t} \mathrm{BB}^{t}\right) \mathrm{BB}^{t} \mathrm{~A}^{t}$
$=\left(\mathrm{B}^{t} \mathrm{BB}^{\mathrm{t}}\right) \mathrm{A}^{\mathrm{t}}$
$=B^{t} \mathrm{~A}^{\mathrm{t}}$
$\left(B^{t} A^{t}\right)(A B)\left(B^{t} A^{t}\right)=B^{t} A^{t}$

Thus (2) is proved

Now, $R(B)=R\left(A^{t}\right) \Rightarrow$ given $x \in C_{n}$ there exist a $y \in C_{n}$ such that $A^{t} y=B x$.

Therefore,

$A^{t} y=B x \Rightarrow\left(A B B^{t}\right) A^{t} y=\left(A B B^{t}\right) B x$
$\Rightarrow(A B)\left(B^{t} A^{t}\right) y=A\left(B^{t} B\right) X$
$\Rightarrow(A B)\left(B^{t} A^{\dagger}\right) y=A(B x)$
$\Rightarrow(A B)\left(B^{t} A^{t}\right) y=\left(A A^{t}\right) y$
Since $A A^{t}$ is hermitian, it follow that (AB) $\left(B^{t} A^{t}\right)$ is Hermitian.
i.e. $\left[(\mathrm{AB})\left(\mathrm{B}^{t} \mathrm{~A}^{t}\right)\right]^{*}=\left[(\mathrm{AB})\left(\mathrm{B}^{t} \mathrm{~A}^{t}\right)\right]$

Thus (3) is proved.
Now,
$R(B)=R\left(A^{t}\right) \Rightarrow$ given $X \in C_{n}$ there exist a $y \in C_{n}$ such that $B x$ $=A^{t} y$.
Therefore, $B x=A^{t} y \Rightarrow\left(B^{t} A^{t} A\right) B x=\left(B^{t} A^{t} A\right) A^{t} y$.
$\Rightarrow\left(B^{t} A^{t}\right) A B x=B^{t}\left(A^{t} A A^{t}\right) y$.
$\Rightarrow\left(B^{t} A^{t}\right)(A B) x=B^{t} A^{t} y$.
$\Rightarrow\left(B^{t} A^{t}\right)(A B) x=B^{t} B(X)$.
Since $\left(B^{t} B\right)$ is hermitian, it follow that $\left(B^{t} A^{t}\right)(A B)$ is Hermitian.
(i.e.) $\left.\left[\left(\mathrm{B}^{t} \mathrm{~A}^{t}\right)(\mathrm{AB})\right]^{*}=\left[\mathrm{B}^{t} \mathrm{~A}^{t}\right)(\mathrm{AB})\right]$

Thus (4) proved. Thus $B^{t} A^{t}$ satisfies all the four equation of the Moore-penrose inverse Hence the theorem.

Remark 2.2: In the above Theorem the condition that $R(A)$ $=R\left(B^{*}\right)$ is essential.

Example 2.3

Let $=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
and $K=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ A and B are $k E P$, matrices
$A B=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right), \rho(\mathrm{AB})=1$
$R(A) \neq R\left(B^{*}\right), A^{\mathfrak{t}}=1 / 14\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), B^{\mathfrak{t}}=\left(\begin{array}{ll}0 & 1 \\ 0 & C\end{array}\right)$
$B^{\mathfrak{t}} A^{\mathfrak{t}}=1 / 14\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),(A B)^{\mathfrak{t}}=1 / 12\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$
Thus $(A B)^{t} \neq B^{t} \mathrm{~A}^{\mathrm{t}}$

Remark 2.4

The converse of Theorem 2.1 need not be true in general.

$$
\begin{aligned}
& \text { For, let } \mathrm{A}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad \mathrm{B}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& \text { and } \mathrm{K}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \mathrm{A} \text { and Bae } \mathrm{k} \text { - } \mathrm{EP}_{1} \text { matrices. } \\
& \mathrm{AB}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad \mathrm{A}^{\mathfrak{t}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& \mathrm{B}^{\mathfrak{t}}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad(\mathrm{AB})^{\mathfrak{t}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \\
& \mathrm{B}^{\mathfrak{t}} \mathrm{A}^{\mathrm{t}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad(\mathrm{AB})^{\mathfrak{t}}=\mathrm{B}^{\mathfrak{t}} \mathrm{A}^{\mathfrak{t}} \\
& \mathrm{But}, \mathrm{R}(\mathrm{~A}) \neq \mathrm{R}\left(\mathrm{~B}^{*}\right)
\end{aligned}
$$

Note 2.5: The validity of the converse of the Theorem 2.1 is proved under certain conditions.

Corollary 2.6: If A, B are $k-E P_{r}$ matrices with $\rho(A B)=r$ and $(A B)^{t}=(A B)^{t}=B^{t} A^{t}$, then $R(A)=R\left(B^{*}\right)$

References

1. Meenakshi AR, Krishnamoorthy S. Proccedings of the National Seminar on Algebra and its Application, Annamalai University; c2019. p. 15-22.
2. Meenakshl AR, Krishnamoorthy S. On k-EP matrices, Linear Algebra and its Application; c2018. p. 269-232.
3. Hii RD, Water SR. On k-real and k-hermitian matrices, Linear Algebra and its Application. 2012;169:17-29.
4. Ben-Israel A, Graville TNE. Generalizes inverses, Theory and Application, Wiley, New York; c2014.
