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Abstract 

In general (AB)ᵼ 


 Bᵼ Aᵼ, for any two matrices A and B. We say that reverse order law holds for More-

Penrose inverse of the product of A and B, if (AB)ᵼ = BᵼAᵼ The main objective in this paper We 

discussed, the necessary and sufficient conditions for the reverse order law (AB)ᵼ = Bᵼ Aᵼ to be hold for a 

pair of k-EP, matrices and B. 
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Introduction 

Let Cnxn be the space of nn complex matrices of order n. Let Cn be the space of complex n 

tuples. For A  Cnxn let AT, A*, Aᵼ, R(A) and (A) denote the transpose conjugate transpose, 

Moore–Penrose inverse, range space, null space and rank of A respectively. A solution X of 

the equation AXA=A is denoted by A. A matrix A  Cnxn is said to be EP, if N(A) = N(A*) 

or R(A) = R(A*) and (A) = r Throughout let 'k' be fixed product of disjoint transposition in 

Sn= {1,2….n) and ‘K’ be the associated permutation matrix. A matrix A= (ij)  Cnxn is k-

hermitian if ij =  k(j), k(i) for j= 1,…n. A theory for k-hermitian matrices is developed in [2]. 

For x = (x1', x2’ ………….. Xn)T  Cn. Let K(X) = (X k(1)' X k(2)’ ………….. Xk(n))T
  Cn. Let 

K(X) = (X k(1)' X k(2)’………………….. X k(n)
T

  Cn. A matrix A  Cnxn is said to be k-EP if 

it satisfies the condition Ax = 0A*K(X)=0 (or) equivalently N(A) N(A*K) (or) R(A) = 

R(KA*) Moreover, A is said to be k-EP, if A is k-EP and (A) = r further properties of k-EP 

matrices one may refer [3]. In [4] it is shown that if A, B and AB are Epr matrices then AB, BA 

Aᵼ Bᵼ are all k-EP, matrices.  

In this paper, necessary and sufficient condition for the reverse order law (AB)ᵼ = Bᵼ Aᵼ to be 

hold for an k-EP, matrices A and B are discussed. 

 

Reverse Order Law for-EPr Matrices 

For any two singular matrices A, B  Cnxn (AB)-1 = B-1 A-1 holds. However, it is not true 

generalized inverse of matrices. In general (AB)ᵼ  BᵼAᵼ for any two matrices A and B. For 

example, 

 

 
 

(AB)ᵼ = [1]. BᵼAᵼ  (AB)t. It is well known that (p. 181, [I]), (AB)ᵼ = BᵼAᵼ if any only if, R(BB* 

A*)  R(A*) and R(A*AB)  R(B). 

 

Theorem 2.1: If A, B are k-EPr Matrices with R(A) = R(B*) then (AB)ᵼ = BᵼAᵼ. 

Proof: Since A is k-EP r' R(A) =R(KA*) 

 R(B*) = R(KA*) (By hypothesis) 

 R(KB) = R(KA*) (Since Bis k-EP) 

 R(B) = R(A*) (Since R (KA) = R(KB) 

 R(A) =R(B)) 

 R(B) = R(Aᵼ) (By [1], R(A*) = R(Aᵼ))
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Now, in order to prove (AB)ᵼ = BᵼAᵼ, it is enough if we 

prove that BᵼAᵼ satisfies the difining four equation of the 

Moore-Penrose inverse, that is 

 

(AB) (Bᵼ Aᵼ) AB = AB (1) 

(BᵼAᵼ) (AB) (BᵼAᵼ) = (BᵼAᵼ) (2) 

[(AB) (BᵼAᵼ)]* = (AB) (BᵼAᵼ)] (3) 

[(BᵼAᵼ) (AB)]* = (BᵼAᵼ) (AB)] (4) 

Now, by [1],  R(A) = (RB)  AAᵼ = BBᵼ  

 

 R(Aᵼ) = R(B)  Aᵼ (Aᵼ)ᵼ = BBᵼ  

 AᵼA = BBᵼ  

 

Hence, (AB) (BᵼAᵼ) (AB) = ABBᵼ (AᵼA) B 

 

= AB (Bᵼ BBᵼ) B 

= A(BBᵼB) B 

= AB 

(AB) (Bᵼ Aᵼ) (AB) = AB 

 

Thus (1) is proved  

Now, (BᵼAᵼ) (AB) (Bᵼ Aᵼ) = Bᵼ (AᵼA) BBᵼ Aᵼ  

= (Bᵼ BBᵼ) BBᵼ Aᵼ  

= (Bᵼ BBᵼ) Aᵼ  

= Bᵼ Aᵼ   

(Bᵼ Aᵼ) (AB) (Bᵼ Aᵼ) =  Bᵼ Aᵼ   

 

Thus (2) is proved  

Now, R(B) = R(Aᵼ)  given x Cn there exist a y  Cn such 

that Aᵼ y = Bx. 

 

Therefore, 

Aᵼy = Bx  (ABBᵼ) Aᵼ y = (ABBᵼ) Bx 

 (AB) (Bᵼ Aᵼ) y = A (BBᵼ B) X 

 (AB) (Bᵼ Aᵼ) y = A (Bx) 

 (AB) (Bᵼ Aᵼ) y = (AAᵼ) y 

 

Since AAᵼ is hermitian, it follow that (AB) (Bᵼ Aᵼ) is 

Hermitian.  

 

i.e. [(AB) (Bᵼ Aᵼ)]* = [(AB) (Bᵼ Aᵼ)] 

 

Thus (3) is proved. 

Now, 

R(B) = R(Aᵼ) given XCn there exist a y Cn such that Bx 

= Aᵼy. 

Therefore, Bx = Aᵼy  (Bᵼ Aᵼ A) Bx = (Bᵼ Aᵼ A) Aᵼ y. 

 (Bᵼ Aᵼ) ABx = Bᵼ (Aᵼ AAᵼ) y. 

 (Bᵼ Aᵼ) (AB) x = Bᵼ Aᵼ y. 

 (Bᵼ Aᵼ) (AB) x = Bᵼ B (X). 

 

Since (BᵼB) is hermitian, it follow that (Bᵼ Aᵼ) (AB) is 

Hermitian. 

 

(i.e.) [(Bᵼ Aᵼ) (AB)]* = [Bᵼ Aᵼ) (AB)] 

 

Thus (4) proved. Thus Bᵼ Aᵼ satisfies all the four equation of 

the Moore-penrose inverse Hence the theorem. 

  

Remark 2.2: In the above Theorem the condition that R (A) 

= R (B*) is essential. 

Example 2.3 

 

 

Remark 2.4 

The converse of Theorem 2.1 need not be true in general. 

 

 
 

Note 2.5: The validity of the converse of the Theorem 2.1 is 

proved under certain conditions. 

 

Corollary 2.6: If A, B are k-EPr matrices with (AB) = r 

and (AB)ᵼ = (AB)ᵼ = Bᵼ Aᵼ, then R(A) = R(B*) 
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