

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 **Impact Factor:** 8.4 IJAR 2023; 9(1): 455-456 www.allresearchjournal.com Received: 26-11-2022 Accepted: 30-12-2022

Dr. Md. Alam Assistant Professor. Department of Mathematics, R.K. College, Madhubani, Bihar, India

Corresponding Author: Dr. Md. Alam Assistant Professor. Department of Mathematics. R.K. College, Madhubani, Bihar, India

Analysis of reverse order Law for k-EP matrices

Dr. Md. Alam

Abstract

In general (AB)^{*i*} ≠ B^{*i*} A^{*i*}, for any two matrices A and B. We say that reverse order law holds for More-Penrose inverse of the product of A and B, if $(AB)^{i} = B^{i}A^{i}$ The main objective in this paper We discussed, the necessary and sufficient conditions for the reverse order law $(AB)^t = B^t A^t$ to be hold for a pair of k-EP, matrices and B.

Keywords: Matrices, penrose inverse, AXA=A

Introduction

Let C_{nxn} be the space of $n \times n$ complex matrices of order n. Let C_n be the space of complex n tuples. For $A \in C_{nxn}$ let A^T , A^* , A^i , R(A) and $\rho(A)$ denote the transpose conjugate transpose, Moore–Penrose inverse, range space, null space and rank of A respectively. A solution X of the equation AXA=A is denoted by A. A matrix $A \in C_{nxn}$ is said to be EP, if $N(A) = N(A^*)$ or $R(A) = R(A^*)$ and $\rho(A) = r$ Throughout let 'k' be fixed product of disjoint transposition in S_n = {1,2...,n) and 'K' be the associated permutation matrix. A matrix A= (α_{ij}) $\in C_{nxn}$ is khermitian if $\alpha_{ij} = \alpha_{k(j), k(i)}$ for j = 1, ..., n. A theory for k-hermitian matrices is developed in ^[2]. For $x = (x_{1', x_{2'}} \dots x_n)^T \in C_n$. Let $K(X) = (X_{k(1)'} X_{k(2)'} \dots X_{k(n)})^T \in C_n$. Let $K(X) = (X_{k(1)}, X_{k(2)}, \dots, X_{k(n)}, X_{k(n)})^{T} \in C_{n}$. A matrix $A \in C_{nxn}$ is said to be k-EP if it satisfies the condition $Ax = 0 \Leftrightarrow A^*K(X)=0$ (or) equivalently N(A) N(A*K) (or) R(A) = R(KA*) Moreover, A is said to be k-EP, if A is k-EP and $\rho(A) = r$ further properties of k-EP matrices one may refer ^[3]. In ^[4] it is shown that if A, B and AB are Ep_r matrices then AB, BA A^tB^t are all k-EP, matrices.

In this paper, necessary and sufficient condition for the reverse order law $(AB)^t = B^t A^t$ to be hold for an k-EP, matrices A and B are discussed.

Reverse Order Law for-EPr Matrices

For any two singular matrices A, B \propto C_{nxn} (AB)⁻¹ = B⁻¹ A⁻¹ holds. However, it is not true generalized inverse of matrices. In general $(AB)^t \neq B^tA^t$ for any two matrices A and B. For example,

A = [1, 0], B =
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, AB = [1]

 $(AB)^{t} = {}^{[1]}$. $B^{t}A^{t} \neq (AB)^{t}$. It is well known that (p. 181, [I]), $(AB)^{t} = B^{t}A^{t}$ if any only if, R(BB* $A^*) \subseteq R(A^*)$ and $R(A^*AB) \subseteq R(B)$.

Theorem 2.1: If A, B are k-EP_r Matrices with $R(A) = R(B^*)$ then $(AB)^i = B^i A^i$. **Proof:** Since A is k-EP $_{r'}R(A) = R(KA^*)$ \Rightarrow R(B*) = R(KA*) (By hypothesis) \Rightarrow R(KB) = R(KA*) (Since Bis k-EP) \Rightarrow R(B) = R(A*) (Since R (KA) = R(KB) \Rightarrow R(A) =R(B))

 \Rightarrow R(B) = R(A^t) (By ^[1], R(A^{*}) = R(A^t))

Now, in order to prove $(AB)^t = B^tA^t$, it is enough if we prove that B^tA^t satisfies the difining four equation of the Moore-Penrose inverse, that is

 $\begin{array}{l} (AB) \ (B^{t} A^{t}) \ AB = AB \rightarrow (1) \\ (B^{t} A^{t}) \ (AB) \ (B^{t} A^{t}) = (B^{t} A^{t}) \rightarrow (2) \\ [(AB) \ (B^{t} A^{t})]^{*} = (AB) \ (B^{t} A^{t})] \rightarrow \quad (3) \\ [(B^{t} A^{t}) \ (AB)]^{*} = (B^{t} A^{t}) \ (AB)] \rightarrow \quad (4) \\ \text{Now, by} \ ^{[1]}, \ R(A) = (RB) \Leftrightarrow AA^{t} = BB^{t} \end{array}$

 $\stackrel{\cdot\cdot}{\to} R(A^{\mathfrak{t}}) = R(B) \Longrightarrow A^{\mathfrak{t}} (A^{\mathfrak{t}})^{\mathfrak{t}} = BB^{\mathfrak{t}}$ $\Longrightarrow A^{\mathfrak{t}}A = BB^{\mathfrak{t}}$

Hence, (AB) $(B^{t}A^{t})$ (AB) = ABB^t (A^tA) B

= AB (B' BB') B= A(BB'B) B = AB (AB) (B' A') (AB) = AB

Thus (1) is proved

Now, $(B^{t}A^{t})(AB)(B^{t}A^{t}) = B^{t}(A^{t}A)BB^{t}A^{t}$ = $(B^{t}BB^{t})BB^{t}A^{t}$ = $(B^{t}BB^{t})A^{t}$ = $B^{t}A^{t}$ $(B^{t}A^{t})(AB)(B^{t}A^{t}) = B^{t}A^{t}$

Thus (2) is proved

Now, $R(B) = R(A^t) \Rightarrow$ given $x \in C_n$ there exist a $y \in C_n$ such that $A^t y = Bx$.

Therefore,

 $\begin{aligned} A^{i}y &= Bx \Longrightarrow (ABB^{i}) A^{i} y = (ABB^{i}) Bx \\ \Rightarrow (AB) (B^{i} A^{i}) y &= A (BB^{i} B) X \\ \Rightarrow (AB) (B^{i} A^{i}) y &= A (Bx) \\ \Rightarrow (AB) (B^{i} A^{i}) y &= (AA^{i}) y \end{aligned}$

Since AA^{i} is hermitian, it follow that (AB) ($B^{i} A^{i}$) is Hermitian.

i.e. $[(AB) (B^{t}A^{t})]^{*} = [(AB) (B^{t}A^{t})]$

Thus (3) is proved.

Now,

 $R(B) = R(A^i) \Rightarrow$ given $X \in C_n$ there exist a $y \in C_n$ such that $Bx = A^iy$.

Therefore, $Bx = A^{i}y \Rightarrow (B^{i} A^{i} A) Bx = (B^{i} A^{i} A) A^{i}y.$ $\Rightarrow (B^{i} A^{i}) ABx = B^{i} (A^{i} AA^{i}) y.$

 $\Rightarrow (B^{\iota} A^{\iota}) (AB) x = B^{\iota} A^{\iota} y.$

 $\Rightarrow (B^{\iota} A^{\iota}) (AB) x = B^{\iota} B (X).$

Since (B'B) is hermitian, it follow that (B' A') (AB) is Hermitian.

(i.e.) $[(B^{t} A^{t}) (AB)]^{*} = [B^{t} A^{t}) (AB)]$

Thus (4) proved. Thus $B^t A^t$ satisfies all the four equation of the Moore-penrose inverse Hence the theorem.

Remark 2.2: In the above Theorem the condition that $R(A) = R(B^*)$ is essential.

Example 2.3

Let
$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
and $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ A and B are k EP, matrices
 $AB = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $\rho(AB) = 1$
 $R(A) \neq R(B^*)$, $A^i = 1/14 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $B^i = \begin{pmatrix} 0 & 1 \\ 0 & C \end{pmatrix}$
 $B^i A^i = 1/14 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $(AB)^i = 1/12 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$
Thus $(AB)^i \neq B^i A^i$

Remark 2.4

The converse of Theorem 2.1 need not be true in general.

For, let
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
and $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ A and Bae k- EP₁ matrices
 $AB = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $A^{t} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
 $B^{t} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $(AB)^{t} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$,
 $B^{t} A^{t} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $(AB)^{t} = B^{t} A^{t}$
But, $R(A) \neq R(B^{*})$

Note 2.5: The validity of the converse of the Theorem 2.1 is proved under certain conditions.

Corollary 2.6: If A, B are k-EP_r matrices with $\rho(AB) = r$ and $(AB)^t = (AB)^t = B^t A^t$, then $R(A) = R(B^*)$

References

- 1. Meenakshi AR, Krishnamoorthy S. Proceedings of the National Seminar on Algebra and its Application, Annamalai University; c2019. p. 15-22.
- 2. Meenakshl AR, Krishnamoorthy S. On k-EP matrices, Linear Algebra and its Application; c2018. p. 269-232.
- 3. Hii RD, Water SR. On k-real and k-hermitian matrices, Linear Algebra and its Application. 2012;169:17-29.
- 4. Ben-Israel A, Graville TNE. Generalizes inverses, Theory and Application, Wiley, New York; c2014.