

~ 26 ~

ISSN Print: 2394-7500

ISSN Online: 2394-5869

Impact Factor: 8.4

IJAR 2023; 9(4): 26-33

www.allresearchjournal.com

Received: 22-01-2023

Accepted: 25-02-2023

Dr. T Muthukumar
Professor (Business Analytics) &

Associate Dean (Academic)

Xavier Institute of Management

& Entrepreneurship (XIME),

Bangalore, Karnataka, India

Corresponding Author:

Dr. T Muthukumar
Professor (Business Analytics) &

Associate Dean (Academic)

Xavier Institute of Management

& Entrepreneurship (XIME),

Bangalore, Karnataka, India

Integrating E-Governance with big data analytics

using apache spark

Dr. T Muthukumar

Abstract

The constant innovations and rapid developments in the IT industry have revolutionized the thinking

and mindset of the people throughout the world. Government departments have also been computerized

to provide transparent, efficient and responsible government through e-governance. The government

have been providing access to various websites or portal for filing complaints, uploading or

downloading forms, pictures, data or PDFs to avail the government services. Enlightened citizens are

frequently using the portal to access government services. Thus, the size and volume of data that need

to be managed by government departments have been increasing drastically under e-governance. The

traditional database management system is not designed to deal with such mix type of data. Moreover,

the speed at which the e-governance generated data need to be processed is another big challenge being

faced by traditional database system.

All the above said concerns can be solved by using the emerging technology - Big Data Analytics

techniques. Big data analytic techniques can make the government more efficient and transparent by

processing structured, unstructured or mixed types data at a great speed. In this paper, we shall

understand the scenario for the need or the emergence of big data analytics in e- governance and

knowhow of Apache Spark. This paper proposes a practical approach to integrate big data analytics

with e- governance using Apache Spark. This paper also reflects how major issues of traditional

database management system (mixed type datasets, speed and accuracy) can be resolved through the

integration of big data analytics and e-governance.

Keywords: E-governance, big data analytics, apache spark

1. Introduction

Due to the advancement in technology, various industries or domains like transport, tourism,

hotel, banks and so on have been digitized and generating large amount of data. People are

using the Internet to generate forms, reports, graphs, periodic or to do online shopping on

discounted rates. Social media (Facebook, Instagram, blogs, twitter etc.) or entertainment

industries are using computers to share pictures, audios and videos. According to a general

survey posted on Wikipedia till April 2019, 56.1% of population has been accessing Internet

services
[10]

. Government websites have also been generating massive amount of data by

uploading or downloading pictures or credentials like finger prints, retina scan, forms,

reports of the citizens. The big data analytic techniques have been designed to store, process

and analyze such a mixed mode data.

Thus, integrating e-governance with big data is the need of the hour. The main objective of

this research paper is to provide an insight of emerging needs to deal with huge data under e-

governance, introduction to Apache Spark framework to store, process and deal with big data

at greater speed and accuracy. This paper progresses by expanding the literature review on e-

governance, Big data, Big data analytics, followed by Apache Spark and proposed a new

system framework.

2. Literature Review

As both the terms – e-governance and Big data analytics are very vast, let us try to

understand them one by one. The first section will deal with e-governance and second

section deal with big data.

International Journal of Applied Research 2023; 9(4): 26-33

file://server/d/allresearchjournal/Issue/8%20Volume%20(2022)/11%20issue/Back%20issue/www.allresearchjournal.com

~ 27 ~

International Journal of Applied Research https://www.allresearchjournal.com

A. E-governance
E-governance refers to the process of providing government
services online. It makes the government system more
efficient, transparent and accountable. Citizens can access
government services by using the web portals that have been
created to provide all services at one click. They can easily
upload or download forms, photos, data and so on. The
biggest example of the success of e-governance is Aadhar
(UDAI) portal run by Indian government. This portal stores
variety of data like text, images, PDF, retina scan, name,
age, address and other related information of their
stakeholders

[2]
. As of 2018, India has a population of over

1.355 billion people, and its growth is expected to continue
through at least 2050

[11]
. Managing such mix type of data

being generated at such a huge level is the biggest
challenge.

B. Big data

As the name is indicating, a huge amount of data that is very

difficult to store, analyze and execute is called Big data. The

definition of big data varies from company to company. One

company’s big data can be small for others. But when the

data does not fit in memory, nor on hard disk and if there is

continuous demand for processing, then it is considered as

big data
[5]

. For some companies, data up to 10 TB is

considered as big data. While, for some other companies,

1 PB of data is considered as big data
[3, 12]

.

i. Big data characteristics

Fig. 1 shows the basic characteristics of big data. These

characteristics are also known as 3Vs
[4, 12]

.

1. Volume: It refers to the total size of data set.

2. Variety: It refers to the type of data generated these

days.

3. Velocity: It refers to the speed and frequency at which

data gets generated.

Fig 1: Big data characteristics

Veracity has also been considered as 4th characteristics

(4Vs) of big data. It refers to the uncertainty and trust

worthiness of data’s origin
[1]

.

ii. Types of big data

The big data can be in the form of text, audio, video, blog,

PDF, log files, sensor data etc. Thus, the data sets can be

categorized
[8]

 as under:

(1) Structured: This type of data has fixed patterns,

formats or schema which can be managed using

RDBMS (traditional database management system).

(2) Semi-structured: This type of database does not have

pre-defined patterns or formats. It may contain data

represented through graphs.

(3) Unstructured: This type of data does not have any

standards or formats of data. Different variety of data

like text, images, video, audio, PDf, log files etc. come

under this category. Here we hardly find any direct

relationship between these datasets.

C. Big data analytic

The term Big data analytics refers to the process of

analyzing raw datasets to understand their hidden patterns

and behaviors using qualitative and quantitative techniques.

The analytic techniques are basically used in B2C (Business

to Customer) applications to collect, categorize, store,

process and analyze the trends and future expectations.

Thus, Big data also helps in decision making. The various

techniques of Big data analytics are as follows in Fig. 2:

1. Descriptive analytics: It uses historic or traditional

datasets and apply predictive or trends analysis on

them.

2. Predictive analysis: It indicates what will happen in

future. It also indicates what will be the situation,

trends or outcome in that particular time span.

3. Prescriptive analysis: It helps to take best possible

solution from multiple options. Predictive analytics

become much mature and stable with age and

experience.

~ 28 ~

International Journal of Applied Research https://www.allresearchjournal.com

Fig 2: Big data analytic techniques

The Big data analytics uses any of the above said techniques

to find hidden patterns and correlation. The traditional data

analytic tools like UNIX, R become inefficient as they store

and analyze the data on a single machine. A single machine

can never be able to store and process the big data. There is

multiple open source software available to process the data

stored on multiple computers. One such solution is HDFS

(Hadoop Distributed File System) and Hadoop Map Reduce
[6, 7]

. The HDFS helps to store the data on multiple

computers called clusters. Clustering makes the data more

secure and fault-tolerant
[9]

. MapReduce is used to perform

parallel processing of big data through clustering
[13]

.

Hadoop distributed File System and MapReduce provide

excellent results in storing, processing and analyzing big

data. But they face challenges when the matter comes of the

processing speed and scale of big data. Another technique is

Apache Spark that provides faster processing at lesser time

than MapReduce.

3. Apache spark

Apache Spark is an open-source, cluster-computing

framework that provides in-memory processing of large

amount of data. As compare to MapReduce, Apache Spark’s

processing capabilities are almost 100 times faster due to in-

memory computation and 10 times faster while using the

disk for storing input-output or processing
[12, 13]

. Apache

MapReduce always stores or keep primary, intermediate

data on hard disks. Thus, to-and-fro travelling of data

consumes time and makes processing speed slower than

Apache Spark.

Apache Spark has powerful APIs that help to correlate the

unstructured, structured and semi-structured data, to analyze

and evaluate the data to make future predictions. Thus, it is

a helpful tool in decision-making. It is highly scalable,

having scalability up to 200 PB of storage. HDFS is also

highly reliable and fault tolerant system. A single cluster of

HDFS, containing 4500 servers, can support billion files and

blocks
[1]

.

A. Apache Spark ecosystem

Just like HDFS, Apache Spark does not provide any storage

or resource management capabilities. Still it manages to

process the data at a great speed and less time that seems

almost real-time processing. Let us understand its

framework and ecosystem to know more about it as shown

in Fig. 3. Apache Spark framework is divided into three

layer
[14]

 such as:

 Spark Core

 Spark Ecosystem

 Resource Management

Fig 3: Apache Spark Ecosystem

i. Spark Core layer

Spark Core is the foundation layer of the framework
[15]

.

This layer is responsible for basic input-output tasks,

scheduling, etc. Apache Spark is written using an Object

Oriented Language – Scala that runs on the top of JVM

(Java Virtual Machine). It supports various programming

languages like Java, Python and R programming. Spark has

a very powerful query engine that responses the query data

in real time manner. Spark provides Data Frame APIs in

Scala, Java and Python languages to use this query engine.

ii. Spark Ecosystem layer

Spark Ecosystem provides another additional library on the

top of Spark Core and Spark Data Frame APIs to enhance

query processing in real-time. Here the data is divided and

distributed into the form of partitions on various clusters.

This is also known as RDD (Resilient Distributed Datasets).

The various components of Spark Ecosystem are as follows:

 Spark SQL: It provides SQL like interface to query

data in CSV, JSON etc. formats. It helps to execute

Data Frames using JDBC APIs and also executes

structured or unstructured type of data.

 Spark Streaming: It refers to the capability of taking

and executing data in micro batches (micro RDD) to

provide real-time execution
[16]

.

 Blink DB: It is just like another query engine. It is

used to execute the interactive queries from large

datasets at faster speed but with the tendency of having

errors. This query engine is useful where aggregated

values may contain errors or be less accurate.

 Spark Machine Learning(MLib): It is Spark’s

machine learning libraries that contains common

learning algorithms like culturing, classification,

collaborative filtering, regression etc.

~ 29 ~

International Journal of Applied Research https://www.allresearchjournal.com

 Graph: Apache Spark provides distributed graph

processing API on the top of Spark Core. It provides

various components like subgraph, Join Vertices and

optimized variant of Pregl API and graph algorithms to

simplify graph analytics

 Tachyon: It refers to process of storing distributed file

system on cache memory. It stores all the required

files/data/intermediate results in cache memory. This

helps to provide file sharing and faster execution in

less time.

iii. Resource management

Before understanding the Apache Spark resource

management, it is good to understand Hadoop Distributed

File System (HDFS) and MapReduce.

The Hadoop Distributed File System (HDFS) is a Java

based file system. It has been designed to store large amount

of data. Here the data is stored on multiple computers, called

commodity hardware, in redundant manner to provide high

fault tolerance at cheaper cost. The data of the file is split

into three equal sizes of 128 MB each
[1]

. Each part is stored

on different commodity hardware, so that the data can be

recovered in case of failure of one hardware. This

framework is based upon Master-Slave architecture,

consisted of Name Node and Data Node. The Name Node

acts as a master. It is responsible for mapping of data,

tracking of data, opening, closing or calling the data files.

Data Node, as a slave, is used to store and manage the

nodes.

Apache Spark uses Hadoop for storing big data files. The

different methods of using Apache Spark with Hadoop are

as shown in Fig. 4.

Fig 4: Different methods of using Spark

 Standalone: In standalone method, HDFS is stored

separately and Spark is stored at the top of it. Spark

and HDFS work side by side to perform all the

required tasks.

 Hadoop Yarn: In this type of deployment, Spark

works or access HDFS with the help of Yarn for

resource management. It does not need to be pre-

installed or any administrative rights. This way Spark

and HDFS can be easily integrated to take maximum

benefits using Yarn.

 Spark Map Reduce: In this type of deployment, a

user can start Spark and takes its advantages without

installing them. Spark in Mad Reduce helps to use

Spark API’s without administrative rights.

Apache Spark combines the features of both HDFS and Map

Reduce. Just like Apache Hadoop, Apache Spark does not

provide any resource management like YARN. It manages

the resources with a single node cluster setup for less

complex datasets but need to be integrated with resource

management modules to deal with complex, distributed

cluster datasets as shown using Fig. 5(a) and 5(b):

Fig 5(a): Apache Spark cluster architecture

~ 30 ~

International Journal of Applied Research https://www.allresearchjournal.com

Fig 5(b): Apache Spark cluster architecture

B. Apache Spark cluster architecture

The important points related to the execution of Apache

Spark cluster architecture
[14, 17]

 are as follows.

(1) Apache Spark Cluster is based on master-salve

architecture with two main processes.

(2) Master Daemon: The master or the main node contains

the actual program (driver program) that drives the

application. The first task done by this driver program

is to create a Spark Context object that is similar to

creating a database connection. This Spark Context

helps to start and continue the communication between

two ends.

The Spark Context helps to divide the jobs (RDDs) into

tasks. These tasks are further distributed and stored on

the worker nodes.

Worker Daemon: The worker node is the slave node

whose main responsibilities are to receive, execute the

(4) source manager starts searching for the node where the

required data resides. It splits the job into different

stages and each stage into different tasks.

(5) Master daemon supplies all the requisite details to the

slave node(s) before execution. Worker daemon keeps

the constant watch on the execution and sends the

status updates to the Master daemon simultaneously.

(6) The same steps are followed for all the slave nodes.

Once all the requirements are completed then all the

slave nodes provide the consolidated value to the

Master Daemon.

Proposed Apache spark based system for analyzing e-

governance datasets

The e-governance can be integrated with various

components provided by Hadoop to face the challenges

occurred due to big data. Here, a new system is proposed to

design and integrate Apache Spark with Hadoop to provide

a framework to deal e-governance big data at a greater speed

and accuracy.

A. Experimental environment set up

The basic requisites of the proposed system are:

1) Download and install Java: In order to install Apache

Spark on the system, you need to download and install

Java (version 1.8). Use a secured link from the Internet

to download Java.

2) Download and install Scala: Apache Spark is made up

of Scala language. Use the secured link to download

Scala. To install Scala
[18]

, run the following commands

(see Table I) for extracting the tar files:

Table I: Installing Scala

Sr. No Requirement Command(s)

1 Extracting Scala tar file

$ tar xvf scala-

<version>.tgz

Example: $ tar xvf scala- 2.11.6.tgz

2 Moving Scala to a specific directory

cd /home/file/downloads/

mv scala-

2.11.6/usr/local/scala

exit

3 Setting path for Scala
$ export PATH

=$PATH:/usr/local/scala/bin

4 Verifying Scala installation $ scala -version

RDDs and return the output back to the Spark Context. It

may reside on the Spark master node or on separate worker

nodes. Basically, it runs on the particular node where the

required data is actually stored to take the advantage of data

locality. All the processing takes places on the local JVM.

~ 31 ~

International Journal of Applied Research https://www.allresearchjournal.com

Resource manager like Yarn or Mesas may reside on the

master node itself or on a separate machine which works

between Master and Slave nodes. They help the Spark

Contact object to manage to-and-fro movement of data and

instructions. The resource manager is responsible for the

tracking of in-between processes.

Spark master daemon initiates the processing by creating a

Spark Context object and sends the request to the resource

manager (Yarn/Mesas) first. The Spark Context object exists

till the end of the program.

Download and install Apache Spark: Use the secured link

to download the latest version of Apache Spark. To install

Apache Spark, run these commands (Table II).

Table 2: Installing Apache Spark

Sr.

No
Requirement Command

1 Extracting Apache Spark tar file

$ tar xvf spark-<version>.tgz

Example: $ tar xvf spark-1.3.1-

bin-hadoop2.6.tgz

2 Moving Spark to a specific directory

cd /home/hadoop/downloads/

mv spark-1.3.1-bin-

hadoop2.6/usr/local/spark

exit

3 Setting path for Spark
$ export PATH

=$PATH:/usr/local/spark/bin

4 Verifying Spark installation $ spark -shell

B. Data source

The data source, used in this paper, has been taken from

open-source data repository (data. World) for research and

analysis. This government collected dataset has been

published by National University of Educational Planning

and Administration, on behalf of department under Ministry

of Human Resource Development.

Department of School Education and Literacy,

Government of India.

The current dataset is regarding the status of Elementary

Education in India, published in the year 2014-2015 and

2015-2016. The School Report Cards are available at

www.schoolreportcards.in(https://data.world/inderz/india-

district-level-school-report-card). Use Table III to know the

detail of the dataset files, their sizes and number of records.

Table 3: Dataset description

File Name
Size of

File

Number of

Columns

Number of

Records

Dist. Report Card 2014-15 2 MB 256 680

Dist. Report Card 2015-16 2 MB 256 680

Some of the fields from the selected dataset, for both the

years, are shown in Table IV.

Table 4: Fields from School Report Card

AC_YEAR Data Reported From
Total Schools by

Category

Total Schools by Category -

Government & Aided

Schools by Category: Boys

Only

Schools by Category:

Girls

Only

Enrolment by School

Category

Teachers by School

Category

Single-Classroom Schools by

School

Category

Schools Approachable by All

Weather Road

Schools with Computer Single Teacher Schools Enrolment by Grade
Teachers by School Category:

Male

Girls Enrolment By School

Category

Teachers by School

Category: Female

Number of Classrooms by

School Category

Committee

(Government & Aided

Schools)

Schools with Enrolment <= 50
Schools Constituted School

Management

Table 5: Records from dataset

Ac_YEAR

Date reported from

School with computer (2014-15)

Primary

only

Primary

with

Primary

with

Upper

Primary

Upper

Primary

Primary

with

Upper

Primary
Total

DISTCD State Name Dist Name SCOMO 1
SCOMO

2

SCOMO

3

SCOMO

4

SCOMO

 5

SCOMO

6

SCOMO

7

SCOMO

TOT

2014-15 0101 Jammu and Kashmir Kupwara 21 91 1 1 1 38 14 167

2014-15 0102 Jammu and Kashmir Baramula 16 116 6 0 3 76 24 241

2014-15 0103 Jammu and Kashmir Srinagar 26 193 45 0 2 204 2 472

2014-15 0104 Jammu and Kashmir Badgam 15 94 8 3 1 67 15 203

2014-15 0105 Jammu and Kashmir Pulwama 16 89 4 1 2 64 13 189

2014-15 0106 Jammu and Kashmir Anantnag 52 160 11 1 3 85 13 325

2014-15 0107 Jammu and Kashmir Leh (Ladakh) 19 84 2 2 2 35 1 145

2014-15 0108 Jammu and Kashmir Kargil 18 65 6 2 1 19 15 126

2014-15 0109 Jammu and Kashmir Doda 13 35 9 0 4 38 2 101

2014-15 0110 Jammu and Kashmir Udhampur 23 87 30 0 4 63 0 207

~ 32 ~

International Journal of Applied Research https://www.allresearchjournal.com

Analysis is done to find out which State of India has highest

percentage increase in Computers in schools. The fields that

are required to be studied for this analysis is AC_YEAR,

Data Reported from and Schools with Computer as shown

in Table V.

C. Experiment details

The purpose of this study is to understand the increase or

decrease of number of computers in each and every state of

India for the last 2 years. Then try to find the state whose

percentage of using computer has been increased.

i. Algorithm

On the basis of available datasets following generic

algorithm is designed to read, load and analysis the datasets.

Step 1: Convert the downloaded Excel files into the flat

files (.csv).

Step 2: Load the .csv file in to the system to create RDD; to

create load Data Frames.

Step 3: Run the SQL commands on

Data Frames to perform manipulations.

Step 4 Rum the SQL command to extract the subset data

file containing fields - Year, Data Reported from and

Schools with Computer 2014-15.

Step 5 Repeat the Step 1 to Step 4 to extract the similar

dataset for Year 2015-16.

Step 6 Load the aggregated subset files for both the years

using Spark framework.

Step 7 Iterate the files for all the districts of each state using

Select command and find total number of computers

available in each state for both years.

Step 8 Iterate state-wise to compare the Total Computers in

each state.

Step 9 Calculate percentage increase or decrease in the total

number of computers in schools for each state as

Formula for percentage change in computer per state =

[(Total Computer in 2015-16 per state - Total Computer in

2014-15 per state) / (Total Computer in 2014-15 per state)]

* 100

ii. Implementation and result

The implementation and the corresponding results of the

experimental environment are as follows:

 Files are loaded in Spark based experimental

environment having 1 Executor, 1 Node system with

Windows 10, Intel Core i5, 2.4 GHz, 8 GB RAM.

 Project Setup

 Here major dependencies are on the following factors:

 Spark core

 Spark sq.

 Spark csv

 Querying .csv data is very easy using the Spark csv

library. For that, we will be using SQL Context object.

With SQL Context object, we can query the data like

we do in any database language. We can perform all the

operations on data like SELECT and also write the data

into a new file.

 After setting up an SBT project, we will start by adding

required dependencies into built. sbt.

 Project execution

To execute the project, perform the following tasks

(1) Set up the Apache Spark configuration.

(2) Initiate the process by making the spark Context object.

(3) Make the sql Context object to retrieve the desired

dataset from the .csv files.

(4) Read the .csv files using sql Context .read .format()

method. Load the data from .csv file into a Resilient

Distributed Dataset (RDD).

Create the Data Frames objects using method toDF();

(5) Run the appropriate queries using SQL commands to

retrieve the desired dataset.

(6) Place the ResultSet in the temporary table or can save it

to use it later.

 Execution Time

 After implementing the Algorithm steps, the following

is the result displayed by the Spark-shell: Result is

[state : BIHAR, old_SCOMPTOT =

5296, new SCOMPTOT =6085, difference 789, %

diff = 14.89803625377]

 Overall experiment completed in 2-4 seconds with

Spark-shell on a single node

 Around 6-8 seconds, when program is compiled to

make jar and then executed on more than one node

iii. Hypothetical analysis

The current dataset has been analyzed on a Windows based

Spark-shell. Considering the amount of data to be processed,

single node system has been used. However, if data volume

increases in size, the datasets can be distributed to N nodes

(multiple nodes) and the overall processing will be as shown

in Fig. 6.

Fig 6: Execution time on Apache Spark based system(s)

~ 33 ~

International Journal of Applied Research https://www.allresearchjournal.com

If the same analysis needs to be performed without using

any technology stack from Big Data ecosystem, the same

process will take much more time for similar records.

It shows that calculation on e-governance data using Apache

Spark has taken only few seconds to compute and display

the name of state that has highest growth in the use of

computers among the schools of all the states in India.

Similar big data framework can be implemented easily to

analyze e-governance datasets collected from other fields as

well.

5. Conclusion

This paper has given the brief introduction of e- governance,

its close relationship with big data and how Apache Spark

based big data analytic system can be helpful in analyzing

government collected datasets accurately at high speed. This

research paper gives an insight about Apache Spark

framework, its node-based architecture as well as the

implementation ways of setting up and analyzing the

government collected datasets.

This paper proposes a new system, through an algorithm, to

analyze government collected datasets (Elementary

Education in India) by setting up a Spark object. This paper

further shows the execution time to perform analysis using

Spark-shell on single executor; single node Windows based

system.

For future references, hypothetical analysis supported by

comparison chart has been created to show how execution

efficiency of government collected datasets will be

increased multiple times using multi-node systems

supported by Apache Spark.

6. References

1. Amol Bansod, “Efficient Big Data Analysis with

Apache Spark in HDFS, International Journal of

Engineering and Advanced Technology”, IJEAT.

August 2015;4(6).

2. Swapnil Shrivastava, Supriya N Pal, “A Big Data

Analytics Framework for Enterprise Service

Ecosystems in an e-Governance Scenario”, ICEGOV

'17, ACM, New Delhi India; c2017.

3. Sruthika S, Tajunisha N. “A study on evolution of data

analytics to big data analytics and its research scope”,

International Conference on Innovations in Information

Embedded and Communication Systems, IEEE; c2015.

4. Preet Navdeep, Dr. Manish Arora, Neeraj Sharma,

“Role of Big Data Analytics in Analyzing e-

Governance Projects”, International onference on New

Trends in Business and Management: An International

Perspective, E-journal ISSN 2250-348X, 2016.

5. Annu kumari, Shailendra Singh, “A review paper on E-

governance: transforming government”, International

Conference on Cloud System and Big Data

Engineering, IEEE, 2016, 689-692.7

6. Bhushan Jadhav, Archana B. Patankar, Sonali B.

Jadhav, “A Practical approach for integrating Big data

Analytics into E-governance using Hadoop”,

Proceedings of the 2nd International Conference

onInventive Communication and Computational

Technologies (ICICCT); c2018.

7. http://index-of.co.uk/Big-Data-

Technologies/Big%20Data%20Analytics%20with%20

R%20and%20 Hadoop.pdf.

8. Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, et al.,

“The rise of “big data” on cloud computing: Review

and open research issues”, International Journal of

Information Sciences, Elsevier; c2014.

9. Hadoop Tutorial, YahooInc.,

https://developer.yahoo.com/hadoop/tutorial/index.html

Big Data Analytics.

10. https://en.wikipedia.org/wiki/Global_Internet_usage.

11. http://worldpopulationreview.com/.

12. http://index-of.co.uk/Big-Data-

Technologies/Big%20Data%20Analytics%20with%20

R%20and%20 Hadoop.pdf.

13. https://backtobazics.com/big-data/spark/introduction-to-

apache- spark/.

14. https://backtobazics.com/big-data/spark/understanding-

apache-spark- architecture/.

15. https://www.youtube.com/watch?v=QaoJNXW6SQo.

16. https://www.youtube.com/watch?v=v25NHJJvwVY

17. https://www.youtube.com/watch?v=jffQhcweGwYs

18. https://www.tutorialspoint.com/apache_spark/apache_s

park_installati on.htm

