

ISSN Print: 2394-7500
ISSN Online: 2394-5869
Impact Factor: 8.4
IJAR 2023; 9(8): 167-171
www.allresearchjournal.com
Received: 04-05-2023
Accepted: 05-06-2023

Harish A

Department of Mathematics Government First Grade College of Arts Sci- Ence and Commerce Sira Tumkur Karnataka India

Lakshmi Janardhana RC Department of Mathematics Government First Grade College Vijaya Nagar Bangalore Karnataka India

KM Nagaraja

Department of Mathematics JSS Academy of Technical Educations Bangalore
Karnataka India

[^0]
Computation of square root of a number using centroidal mean and its invariant

Harish A Lakshmi Janardhana RC and KM Nagaraja

DOI: https://doi.org/10.22271/allresearch.2023.v9.i8c. 11186

Abstract

Abstract. In this article the invariant centroidal mean is introduced. A pair of double sequences in term of Centroidal mean and its invariant are defined discussed the properties monotonicity log-convexity and log-concavity. Finally as an illustration it is justified that the new Gaussian compound mean $C T^{\prime} \otimes$ $C T$ converging faster than Gaussian compound mean $H \otimes A .2000$ Mathematics Subject Classification. Primary 26D15.

Keywords: Arithmetic mean geometric mean harmonic mean centroidal mean and invariant centroidal mean

1. Introduction

For $a b>0$ the well-known means in literature are $A(a b)=\frac{a+b}{2} G(a b)=$ $\sqrt{a b} H(a b)=\frac{2 a b}{a+b}$ and $C(a b)=\frac{2}{3}\left(\frac{a^{2}+a b+b^{2}}{a+b}\right)$ are respectively called Arithmetic Geometric Harmonic and Centroidal mean. The various interesting results are found in ${ }^{[3,5]}$ and Researchers discussed about double sequences.
As an illustration ${ }^{[6]}$ the popular iteration method called Heron's iteration method is used to extract the square root of any positive number from Gaussian double sequences given by $a_{n+1}=H\left(a_{n} b_{n}\right)$ and $b_{n+1}=A\left(a_{n} b_{n}\right)$ also used the Archimedean double sequences a_{n+1} $=A\left(a_{n} b_{n}\right)$ and $b_{n+1}=G\left(a_{n+1} b_{n}\right)$ to get the approximate value of π. In ${ }^{[16]}$ Nagaraja et $a l$. were discussed logarithmic convexity and logarithmic concavity of Archimedean and Gaussian double sequences. This work motivated to develop this article.

2. Definitions and Results

Definition 2.1. ${ }^{[6]}$ A mean is put forth as a function $f: R_{+}^{2} \rightarrow R_{+}$which has the property where $r \wedge s=\min (r s)$ and $r \vee s=\max (r s)$

Definition 2.2. ${ }^{[6]}$ A mean N is P-complementary to M if it satisfies $P(M N)=P$. Suppose a given mean M has a unique G-corresponding mean N is denoted by
$N=M^{(G)}=\frac{G^{2}}{M}$
Then the invarient centroidal mean is defined as $C T^{\prime}=\frac{3}{2}\left(\frac{a b(a+b)}{a^{2}+a b+b^{2}}\right)$
Definition 2.3. ${ }^{[6]}$ The double sequences in terms of invariant centroidal mean and cen-troidal means are defined as;
$a_{n+1}=C T^{\prime}\left(a_{n} b_{n}\right)=\frac{3}{2}\left(\frac{a b(a+b)}{a^{2}+a b+b^{2}}\right)$ and $b_{n+1}=C T(a b)=\frac{2}{3}\left(\frac{a^{2}+a b+b^{2}}{a+b}\right)$

Definition 2.4. ${ }^{[1]}$ The sequence c_{n} is said to be log-convex if $c_{n}^{2} \leq c_{n+1} c_{n-1}$ otherwise it is called log-concave.
Definition 2.5. ${ }^{[6]}$ The sequence $\left(r_{n}\right)_{n} \geq 0$ and $\left(s_{n}\right)_{n} \geq 0$ given $r_{n+1}=M\left(r_{n} s_{n}\right) s_{n+1}=N\left(r_{n} s_{n}\right) n \geq 0$ is called a Gaussian double sequence.

Lemma 2.1. The Invariant Centroidal mean for two distinct positive real values a and b isa mean.
Proof: The proof of this lemma is discussed by considering two cases as below:
Case (i): For $a<b$
Consider $a-C T^{\prime}(a b)=a-\frac{3}{2}\left(\frac{a b(a+b)}{a^{2}+a b+b^{2}}\right)=\left(\frac{(a-b)(2 a+b)}{2\left(a^{2}+a b+b^{2}\right)}\right)<0$
Which gives $a-C T^{\prime}(a b)<0$
$a<C T^{\prime}(a b)=0$ and hence $C T^{\prime}(a b)>a$
Case (II): For $a<b$
Consider $C T^{\prime}(a b)-b=\frac{3}{2}\left(\frac{a b(a+b)}{a^{2}+a b+b^{2}}\right)-b=\frac{b}{2}\left(\frac{(a-b)(2 a+b)}{\left(a^{2}+a b+b^{2}\right)}\right)<0$
Which gives $C T^{\prime}(a b)-b<0$ and hence $C T^{\prime}(a b)<b$
Combining both the above cases $\operatorname{Min}(a b)<C T^{\prime}(a b)<\operatorname{Max}(a b)$.
Therefore $a<C T^{\prime}(a b)<b$ Satisfy the condition to be a mean
Hence the proof of lemma 2.1
Property: Since $C T^{\prime}(a b)=C T^{\prime}(a b)$ and $C T^{\prime}(t a t b)=t C T^{\prime}(a b)$ it is clear that invariant to centroidal mean is symmetric and homogeneous respectively.

Theorem 2.1. For two distinct positive real values $a_{n}<b_{n}$ the sequence $a_{n+1}=C T^{\prime}\left(a_{n} b_{n}\right)$ is monotonically increasing and the sequence $b_{n+1}=\operatorname{CT}\left(a_{n} b_{n}\right)$ is monotonically decreasing. Also satisfy
$\min (a b)=a=a_{0}<a_{1}<a_{2}<. .<a_{n}<a_{n+1}<$
$\ldots<b_{n+1}<b_{n}<. .<b_{1}<b_{0}=b=\max (a b)$
Proof: Let $a_{n+1}=C T^{\prime}\left(a_{n} b_{n}\right)=\frac{3}{2}\left(\frac{a b(a+b)}{a^{2}+a b+b^{2}}\right)$ and $b_{n+1}=C T(a b)=\frac{2}{3}\left(\frac{a^{2}+a b+b^{2}}{a+b}\right)$
$\frac{a_{n+1}}{a_{n}}=\frac{3 b_{n}\left(a_{n}+b_{n}\right)}{2\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right)}>1$
Gives $a_{n+1}>a_{n}$ which hold for all n
This proves that
(2.1) $\operatorname{Min}(a b)=a=a_{0}<a_{1}<a_{2}<\ldots<a_{n}<a_{n+1}$

Similarly
$\frac{b_{n+1}}{b_{n}}=\frac{2\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right)}{3 b_{n}\left(a_{n}+b_{n}\right)}<1$
Gives $b_{n+1}>b_{n}$ which hold for all n
This proves that
(2.2) $b_{n+1}<b_{n}<\ldots<b_{1}<b_{0}=b=\max (a b)$

Eqs (2.1) and (2.2) leads to theorem 2.1
Theorem 2.2. For $n \geq 0 a_{n}<b_{n}$ the sequencea $a_{n+1}=C T^{\prime}\left(a_{n} b_{n}\right)$ is log-concave and thesequence $b_{n+1}=$
$C T\left(a_{n} b_{n}\right)$ is log-convex.
Proof: If $a_{n}<b_{n}$ the Centroidal mean and invariant to Centroidal mean are given by
$b_{n+1}=C T\left(a_{n} b_{n}\right)=\frac{2}{3} \frac{\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right)}{\left(a_{n}+b_{n}\right)}$ and $a_{n+1}=C T^{\prime}\left(a_{n} b_{n}\right)=\frac{3}{2}\left(\frac{a_{n} b_{n}\left(a_{n}+b_{n}\right)}{a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}}\right)$
$\frac{a_{n}}{a_{n+1}}-\frac{a_{n-1}}{a_{n}}=\frac{2\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right)}{3 b_{n}\left(a_{n}+b_{n}\right)}-\frac{2\left(a_{n-1}^{2}+a_{n-1} b_{n-1}+b_{n-1}^{2}\right)}{3 b_{n-1}\left(a_{n-1}+b_{n-1}\right)}$
$=\frac{2\left(a_{n}^{2} a_{n-1} b_{n-1}+a_{n}^{2} b_{n-1}^{2}-a_{n} b_{n} a_{n-1}^{2}-a_{n-1}^{2} b_{n}^{2}\right)}{3 b_{n} b_{n-1}\left(a_{n-1}+b_{n-1}\right)\left(a_{n}+b_{n}\right)}$
$=\frac{2\left(a_{n} a_{n-1}+a_{n} b_{n-1}+a_{n-1} b_{n}\right)\left(a_{n} b_{n-1}-b_{n} a_{n-1}\right)}{3 b_{n} b_{n-1}\left(a_{n-1}+b_{n-1}\right)\left(a_{n}+b_{n}\right)}$
Since $a_{0}<a_{1}<a_{2}<\ldots<a_{n}<b_{n}<b_{n-1}<$ \qquad $<b_{1}<b_{0}$
$a_{n} b_{n-1}>b_{n} a_{n-1}$
$a_{n} b_{n-1}-b_{n} a_{n-1}>0$
(since $a_{n-1}<a_{n}$ and $b_{n}<b_{n-1}$)
$\frac{a_{n}}{a_{n+1}}-\frac{a_{n-1}}{a_{n}}>0$
So $a_{n}^{2}>a_{n+1} a_{n-1}$ and hence $a_{n+1}=C T^{\prime}\left(a_{n} b_{n}\right)$ is log-concave
Similarly Consider
$\frac{b_{n}}{b_{n+1}}-\frac{b_{n-1}}{b_{n}}=\frac{3 b_{n}\left(a_{n}+b_{n}\right)}{2\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right)}-\frac{3 b_{n-1}\left(a_{n-1}+b_{n-1}\right)}{2\left(a_{n-1}^{2}+a_{n-1} b_{n-1}+b_{n-1}^{2}\right)}$
$=\frac{3\left(a_{n} b_{n} a_{n-1}^{2}+b_{n}^{2} a_{n-1}^{2}-a_{n}^{2} a_{n-1} b_{n-1}-b_{n-1}^{2} a_{n}^{2}\right)}{2\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right)\left(a_{n-1}^{2}+a_{n-1} b_{n-1}+b_{n-1}^{2}\right)}$
$=\frac{3\left(b_{n} a_{n-1}-a_{n} b_{n-1}\right)\left(a_{n} a_{n-1}+b_{n} a_{n-1}-b_{n-1} a_{n}\right)}{2\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right)\left(a_{n-1}^{2}+a_{n-1} b_{n-1}+b_{n-1}^{2}\right)}$
Since $a_{0}<a_{1}<a_{2}<\ldots<a_{n}<b_{n}<b_{n-1}<\ldots \ldots \ldots<b_{1}<b_{0}$
$a_{n} b_{n-1}>b_{n} a_{n-1}$
$b_{n} a_{n-1}-a_{n} b_{n-1}<0$
(since $a_{n-1}<a_{n}$ and $b_{n}<b_{n-1}$)
$\frac{b_{n}}{b_{n+1}}-\frac{b_{n-1}}{b_{n}}<0$
So $b_{n}^{2}<b_{n+1} b_{n-1}$ and hence $b_{n+1}=C T\left(a_{n} b_{n}\right)$ is log-convex. Thus the Proof of theorem 2.2 completes.
Theorem 2.3. The sequences $\left(a_{n}\right)_{n} \geq 0$ and $\left(b_{n}\right)_{n} \geq 0$ are defined in terms of invariant to centroidal mean and centroidal mean which convergent to the common limit depicted as $C T(a b) \otimes C T^{\prime}(a b)=G(a b)=\sqrt{x}$.

Proof: We know that $a_{n}<a_{n+1}<b_{n+1}<b_{n} n \geq 0$
$b_{n+1}-a_{n+1}=\frac{\left(4 a_{n}^{4}+4 b_{n}^{4}-a_{n}^{3} b_{n}-a_{n} b_{n}^{3}-6 a_{n}^{2} b_{n}^{2}\right)}{6\left(a_{n}^{3}+b_{n}^{3}+2 a_{n}^{2} b_{n}+2 a_{n} b_{n}^{2}\right)}$
Consider $\frac{\left(4 a_{n}^{4}+4 b_{n}^{4}-a_{n}^{3} b_{n}-a_{n} b_{n}^{3}-6 a_{n}^{2} b_{n}^{2}\right)}{6\left(a_{n}^{3}+b_{n}^{3}+2 a_{n}^{2} b_{n}+2 a_{n} b_{n}^{2}\right)}-\left(b_{n}-a_{n}\right)$
(2.4) $\frac{\left(a_{n}-b_{n}\right)\left(14 a_{n}^{3}+6 b_{n}^{3}+19 a_{n}^{2} b_{n}+13 a_{n} b_{n}^{2}\right)}{6\left(a_{n}^{3}+b_{n}^{3}+2 a_{n}^{2} b_{n}+2 a_{n} b_{n}^{2}\right)}<\frac{\left(b_{n}-a_{n}\right)}{6}$

Combining the eqs (2.3) and (2.4) gives
$b_{n+1}-a_{n+1}<\frac{b_{n}-a_{n}}{6}$
Repeat the process leads to
$b_{n+1}-a_{n+1}<\frac{b_{n}-a_{n}}{6}<\frac{b_{n-1}-a_{n-1}}{6}<\cdots<\frac{b-a}{6}$
So as $n \rightarrow \infty b_{n+1}-a_{n+1} \rightarrow 0$ and
$\lim _{n \rightarrow \infty} b_{n+1} a_{n+1}=\lim _{n \rightarrow \infty} b_{n} a_{n}=\ldots \ldots=a b=\sqrt{a b} \sqrt{a b}$
Take $a=1 b=x$ leads to
$\lim _{n \rightarrow \infty} b_{n+1} a_{n+1}=\sqrt{x} \sqrt{x}=x$
Thus by Theorem $2.1\left(a_{n}\right)_{n} \geq 0$ and $\left(b_{n}\right)_{n} \geq 0$ are monotonically increasing and monoton- ically decreasing sequences respectively. Also
$a_{n+1} b_{n+1}=C T^{\prime}\left(a_{n} b_{n}\right) C T\left(a_{n} b_{n}\right)=\left(\frac{a_{n} b_{n}\left(a_{n}+b_{n}\right)}{a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}}\right)\left(\frac{\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right)}{\left(a_{n}+b_{n}\right)}\right)=a_{n} b_{n}$
Where x is a multiple of two positive real numbers. This implies that
(2.5)
$\lim _{n \rightarrow \infty} a_{n} \times \lim _{n \rightarrow \infty} b_{n}=x$
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\sqrt{x}$
Therefore the sequence " $\left(a_{n}\right)_{n} \geq 0$ and $\left(b_{n}\right)_{n} \geq 0$ " are convergent to a common limit \sqrt{x}.
Hence the proof of theorem 2.3 completes.

3. Application of extracting square root

In ${ }^{[6]}$ authors discussed Heron's method of extracting square roots using Gaussian compound mean $H \otimes A$. In this section the convergence process of the new Gaussian compound mean $C T^{\prime} \otimes C T$ and $H \otimes A$ are discussed.
The following table-1 and figures (1) and (2) illustrate the approximate process of computing $\sqrt{2}$. Also evident that $C T^{\prime} \otimes$ $C T$ is convergence to common limit faster than $H \otimes A$.

Fig 1: Graphs of Gaussian and centroidal compound means

Fig 2: Comparison of Gaussian and centroidal compound means
Table 1: The values of Gaussian compound mean and new compound mean

	Gaussian compound	mean		New Gaussian compound	Mean
	H x A			CT x CT	
N	A_{n}	B_{n}	N	A_{n}	B_{n}
0	1	2	0	1	2
1	1.5	1.333333	1	1.555555556	1.285714
2	1.420635	1.407821	2	1.424906151	1.403601
3	1.414254	1.414173	3	1.414280427	1.414147
4	1.414214	1.414214	4	1.414213565	1.414214
5	1.414214	1.414214	5	1.414213562	1.414214
6	1.414214	1.414214	6	1.414213562	1.414214
7	1.414214	1.414214	7	1.414213562	1.414214

4. Acknowledgement

The authors acknowledge anonymous referees for their careful reading of the manuscriptand their fruitful comments and suggestions.

5. References

1. Nagaraja KM Siva Kota Reddy P. Log Convexity and Concavity of some double sequences Scientia Magna. 2011;7(2):78-81.
2. Nagaraja KM Siva Kota Reddy P. A note on power mean and generalized contra-harmonic mean Department of Mathematics Northwest University. 2012;8(3):60-62.
3. Nagaraja KM Lokesha V Padmanabhan S. A simple proof on strengthening and extension of inequalities Adv. Stud. Contemp. Math. 2008;17(1):97-103.
4. Lokesha V Nagaraja KM. Relation between series and important means Advances in theoretical and applied mathematics. 2007;2(1):31-36.
5. Simsek Y Lokesha V Padmanabhan P Nagaraja KM. Relation between Greek means and various mean General Mathematics. 2009;17(3):03-13.
6. Toader G Toader S. Greek means and Arithmetic mean and Geometric mean RGMIA Mono-graph Australia; c2005.

[^0]: Corresponding Author:
 Harish A
 Department of Mathematics Government First Grade College of Arts Sci- Ence and Commerce Sira Tumkur
 Karnataka India

