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Abstract

Abstract. In this article the invariant centroidal mean is introduced. A pair of double sequences in term
of Centroidal mean and its invariant are defined discussed the properties monotonicity log-convexity
and log-concavity. Finally as an illustration it is justified that the new Gaussian compound mean CT' ®
CT converging faster than Gaussian compound mean H ® A. 2000 Mathematics Subject Classification.
Primary 26D15.
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1. Introduction
a+b

For a b > 0 the well-known means in literature areA(ab) = - G(ab) =
vab H(a b) = 29 and Clab) = 2 (W) are respectively called Arithmetic Geometric

a+b 3 +b
Harmonic and Centroidal mean. The various interesting results are found in [ 51 and

Researchers discussed about double sequences.

As an illustration [® the popular iteration method called Heron’s iteration method is used to
extract the square root of any positive number from Gaussian double sequences given by
an+1 = H(a, by)and b, = A(a, b,)also used the Archimedean double sequences an+1
= A(an bn) and bn+1 = G(an+ bn) to get the approximate value of z. In I 61 Nagaraja et
al. were discussed logarithmic convexity and logarithmic concavity of Archimedean and
Gaussian double sequences. This work motivated to develop this article.

2. Definitions and Results
Definition 2.1. 1 A mean is put forth as a function f:R? — R, which has the
property where r A s = min(rs)andr V s = max(rs)

Definition 2.2. B A mean N is P-complementary to M if it satisfies P (MN) = P.
Suppose a given mean M has a unique G-corresponding mean N is denoted by

N=M(G)=G_2
M

Then the invarient centroidal mean is defined as CT’ = 2 (%)
2 \a“+ab+b

Definition 2.3. ® The double sequences in terms of invariant centroidal mean and
cen-troidal means are defined as;

f 3 ( ab(a+b)
s = CT'(ay b) =3 (i

Jand b = a2 (22)

a+b
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Definition 2.4. ™M The sequence ¢, is said to be log-convex if c¢2 < ¢, ¢,,—1 Otherwise it is called log-concave.
Definition 2.5. 61 The sequence (7;,),, = 0 and (s,,),, = 0 given 1,41 = M(73, Sp,) Spy1 = N(1;, s,) n = 0 is called
a Gaussian double sequence.

Lemma 2.1. The Invariant Centroidal mean for two distinct positive real values a and b isa mean.
Proof: The proof of this lemma is discussed by considering two cases as below:

Case (i): Fora < b

i — ' _ 3 ( ab(a+b) \ _ ((a-b)(2a+b)
Consider a — CT'(ab) = a - (a2+ab+b2) = (2(a2+ab+bz)) <0

Which givesa — CT'(ab) <0
a<CT'(ab)=0and hence CT'(ab) > a

Case (I): Fora<b

Consider CT'(ab) — b = E(M) b= g((a—bxmm) <0

2 \a2+ab+b? (a?+ab+b?3)
Which gives CT'(a b) —b < 0and hence CT'(ab) < b
Combining both the above cases Min(a b) < CT'(a b) < Max(a b).
Therefore a < CT'(a b) < b Satisfy the condition to be a mean
Hence the proof of lemma 2.1

Property: Since CT'(ab) = CT'(ab) and CT'(ta tb) = tCT'(a b) it is clear thatinvariant to centroidal mean is
symmetric and homogeneous respectively.

Theorem 2.1. For two distinct positive real values a, < b, the sequence a,,; = CT'(a, b,,)is monotonically increasing
and the sequence b,,; = CT(a, b,) is monotonically decreasing. Also satisfy

min(fab)=a=a,<a; <a, <..<ap < apy <
o < bppr < b, <..<b; <by=b=max(ab)

a2+ab+b2)

Proof: Let a,,, = CT'(a, b,) = 3( ab(a+b) -

2 \a2+ab+p2

) and b, = CT(ab) = g(
Any1 _ 3bn(an + bn)

= >1
a, 2(az + apb, + b2)

Gives a, ., > a, which hold for all n

This proves that
RO Min(ab)=a=ay<a;<a, <....<a, < ap4q

Similarly

bn+1 _ Z(arzl + anbn + b721)
b,  3bn(an+by)

<1

Gives b, ;1 > b,, which hold for all n

This proves that

(2.2) bpy1 < b, <....< by < by =b =max(ab)
Eqgs (2.1) and (2.2) leads to theorem 2.1

Theorem 2.2. For n = 0 a, < b, the sequencea,,., = CT'(a, b,) is log-concave and thesequence b,,,, =
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CT(a, b,) is log-convex.

Proof: If a,, < b,, the Centroidal mean and invariant to Centroidal mean are given by

(af+anbn+b3)
(an+bn)

bpyq = CT(an bn) =§

an ap-1 _ Z(arzl + anbn + b%) _ Z(arzz—l + an—lbn—l + b%—l)

Ani1 an - 3bn(an + bn) 3bn—1(an—1 + bn—l)

_ 2(afan_1bpy + aibi_; — aybnai_y — ai_1bf)
3bnbn—1(an—1 + bn—l)(an + bn)

— 2(anan—l + anbn—l + an—lbn)(anbn—l - bnan—l)
3bnbn—1(an—1 + bn—l)(an + bn)

Sinceag<a; <a, <....<a, <b,<b,_1 < .. < b; < b,
Anbp_1 > bpan_4
anbn_l - bnan_l > 0

(since a,,_4 < ay and b, < b,,_4)

an an-1

>0
Ant1 an

So a? > a,,,a,_, and hence a,.,; = CT'(a, b,) is log-concave
Similarly Consider

bn bn—l _ 3bn(an + bn) 3bn—1(an—1 + bn—l)

bnyr  bn  2(a2+apb, +b2)  2(a2_; + ay_iby_y +b2_;)

_ 3(anbnaj_1 +bla;_y — aian_1bn_y — b}_ia})
B 2(61% + anbn + brzl)(arzl—l + an—lbn—l + brzl—l)

— 3(bnan—1 - anbn—l)(anan—1+bnan—1 - bn—lan)
2((1721 + anbn + brzl)(arzl—l + an—lbn—l + brzz—l)

Sinceay<a,<a, <....<ap< b, <b,_ 1< uou... < b; < b,
Anbyn_1 > bpan_4

bpan_1 —apb,_1 <0

(since a,,_4 < a, and b, < b,,_4)

bn bn—l

bn+1 bn

<0

_ ' _3 (anbn(an+bn)
and a,,; = CT'(a, b,) = 2 @Zranbnin?

)

https://wwwe.allresearchjournal.com

So b2 < by,1b,_; and henceb,,., = CT(a, b,) is log —convex. Thus the Proof of theorem 2.2 completes.

Theorem 2.3. The sequences (a,), =0 and (b,), = 0 are defined in terms of invariant to centroidal mean and
centroidal mean which convergent to the common limit depicted as CT(a b) ® CT'(a b) = G(a b) = Vx.

Proof: We know that a,, < a4 < bpyr <b,n =0

b a _ (4af+4bi—-aiby—anbi—6a2b3)
n+1 n+1 ™ (a3 +b3+2aZbp+2a,b3)
(4a}+4bj—a3bp—anbi—6aib3)
3,13 2 2 - (bn - an)
6(a3+b3+2a2bp+2anb3)

Consider
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—bn)(14a3+6b3+19adby+13anb3) _ (bp—an)
6(ad+b3+2a%bp+2a,b3) 6

(2.4)

Combining the egs (2.3) and (2.4) gives

bpii—ape1 < <
Soasn —» o« b,,;—a,+; = 0and
111_{130 byi10n41 =7111_>r£1o b,a, = ... = ab = VabVab
Takea =1b = x leads to

TILI_IBO bri1anir = VXvx = x

Thus by Theorem 2.1 (a,), =0 and (b,), =0 are monotonically increasing and monoton- ically decreasing
sequences respectively. Also

b +b &+ ayb, + b},
an+1bn+1 — CT/(an bn)CT(an bn) _ (an n(an n))((an anbn n)) — nbn

az + a,b, + bz (a, +by)

Where x is a multiple of two positive real numbers. This implies that
(2.5)

lim a, X lim b, = x

n—oo n—oo

lim a, = lim b, = Vx

n—oo n—oo

Therefore the sequence “(a,,), = 0 and (b,,),, = 0 are convergent to a common limit v/x.
Hence the proof of theorem 2.3 completes.

3. Application of extracting square root

In ] authors discussed Heron’s method of extracting square roots using Gaussian compound mean H ® A. In this section
the convergence process of the new Gaussian compound mean CT' @ CT and H @ A are discussed.

The following table-1 and figures (1) and (2) illustrate the approximate process of computing v2. Also evident that CT' ®
CT is convergence to common limit faster than H @ A.
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Fig 1: Graphs of Gaussian and centroidal compound means

~170~


https://www.allresearchjournal.com/

International Journal of Applied Research

https://wwwe.allresearchjournal.com

1.8
141 __-ﬁ_""_ -
1.2 - H
! —A
0.8 CT
0.6
s C T
0.4
0.2
0
1 2 3 4 5 6 7
Fig 2: Comparison of Gaussian and centroidal compound means
Table 1: The values of Gaussian compound mean and new compound mean
Gaussian compound mean New Gaussian compound Mean
HxA CTxCT
N An Bn N An Bn
0 1 2 0 1 2
1 15 1.333333 1 1.555555556 1.285714
2 1.420635 1.407821 2 1.424906151 1.403601
3 1.414254 1.414173 | 3 1.414280427 1.414147
4 1.414214 1414214 | 4 1.414213565 1.414214
5 1.414214 1414214 | 5 1.414213562 1.414214
6 1.414214 1414214 | 6 1.414213562 1.414214
7 1.414214 1414214 | 7 1.414213562 1.414214

4. Acknowledgement
The authors acknowledge anonymous referees for their careful reading of the manuscriptand their fruitful comments and
suggestions.

5. References
Nagaraja KM Siva Kota Reddy P. Log Convexity and Concavity of some double sequences Scientia Magna.

1.

2.

3.

2011;7(2):78-81.

Nagaraja KM Siva Kota Reddy P. A note on power mean and generalized contra-harmonic mean Department of
Mathematics Northwest University. 2012;8(3):60-62.
Nagaraja KM Lokesha V Padmanabhan S. A simple proof on strengthening and extension of inequalities
Adv. Stud. Contemp. Math. 2008;17(1):97-103.
Lokesha V Nagaraja KM. Relation between series and important means Advances in theoretical and applied

mathematics. 2007;2(1):31-36.

Simsek Y Lokesha V Padmanabhan P Nagaraja KM. Relation between Greek means and variousmean General

Mathematics. 2009;17(3):03-13.

Toader G Toader S. Greek means and Arithmetic mean and Geometric mean RGMIA Mono-graph Australia;

€2005.

~171~


https://www.allresearchjournal.com/

