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Abstract 

Abstract. In this article the invariant centroidal mean is introduced. A pair of double sequences in term 

of Centroidal mean and its invariant are defined discussed the properties monotonicity log-convexity 

and log-concavity. Finally as an illustration it is justified that the new Gaussian compound mean CT' ⊗ 

CT converging faster than Gaussian compound mean H ⊗ A. 2000 Mathematics Subject Classification. 

Primary 26D15. 
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1. Introduction 

For 𝑎 𝑏 > 0 the well-known means in literature are 𝐴(𝑎 𝑏) =
𝑎+𝑏

2
 𝐺(𝑎 𝑏) =

√𝑎𝑏 𝐻(𝑎 𝑏) =
2𝑎𝑏

𝑎+𝑏
 and 𝐶(𝑎 𝑏) =

2

3
(

𝑎2+𝑎𝑏+𝑏2

𝑎+𝑏
) are respectively called Arithmetic Geometric 

Harmonic and Centroidal mean. The various interesting results are found in [3, 5] and 

Researchers discussed about double sequences. 

As an illustration [6] the popular iteration method called Heron’s iteration method is used to 

extract the square root of any positive number from Gaussian double sequences given by 

𝑎𝑛+1 = 𝐻(𝑎𝑛 𝑏𝑛) and 𝑏𝑛+1 = 𝐴(𝑎𝑛 𝑏𝑛) also used the Archimedean double sequences an+1 

= A(an bn) and bn+1 = G(an+1 bn) to get the approximate value of π. In [1 6] Nagaraja et 

al. were discussed logarithmic convexity and logarithmic concavity of Archimedean and 

Gaussian double sequences. This work motivated to develop this article. 

 

2. Definitions and Results 

Definition 2.1. [6] A mean is put forth as a function 𝑓: 𝑅+
2 → 𝑅+ which has the 

property where 𝑟 ∧  𝑠 =  𝑚𝑖𝑛(𝑟 𝑠) 𝑎𝑛𝑑 𝑟 ∨  𝑠 =  𝑚𝑎𝑥(𝑟 𝑠) 
 

Definition 2.2. [6] A mean N is P-complementary to M if it satisfies P (MN ) = P. 

Suppose a given mean M has a unique G-corresponding mean N is denoted by 

 

𝑁 = 𝑀(𝐺) =
𝐺2

𝑀
  

 

Then the invarient centroidal mean is defined as 𝐶𝑇′ =
3

2
(

𝑎𝑏(𝑎+𝑏)

𝑎2+𝑎𝑏+𝑏2) 

 

Definition 2.3. [6] The double sequences in terms of invariant centroidal mean and 

cen- troidal means are defined as; 

 

𝑎𝑛+1 =  𝐶𝑇′(𝑎𝑛 𝑏𝑛) =
3

2
(

𝑎𝑏(𝑎+𝑏)

𝑎2+𝑎𝑏+𝑏2) and 𝑏𝑛+1 = 𝐶𝑇(𝑎 𝑏) =
2

3
(

𝑎2+𝑎𝑏+𝑏2

𝑎+𝑏
) 
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Definition 2.4. [1] The sequence cn is said to be log-convex if 𝑐𝑛
2 ≤ 𝑐𝑛+1𝑐𝑛−1 otherwise it is called log-concave. 

Definition 2.5. [6] The sequence (𝑟𝑛)𝑛 ≥ 0 and (𝑠𝑛)𝑛 ≥ 0 given 𝑟𝑛+1 = 𝑀(𝑟𝑛 𝑠𝑛) 𝑠𝑛+1 = 𝑁(𝑟𝑛 𝑠𝑛) 𝑛 ≥ 0 is called 

a Gaussian double sequence. 

 

Lemma 2.1. The Invariant Centroidal mean for two distinct positive real values a and b is a mean. 

Proof: The proof of this lemma is discussed by considering two cases as below: 

 

Case (i): For 𝑎 < 𝑏  

 

Consider 𝑎 − 𝐶𝑇′(𝑎 𝑏) = 𝑎 −
3

2
(

𝑎𝑏(𝑎+𝑏)

𝑎2+𝑎𝑏+𝑏2) = (
(𝑎−𝑏)(2𝑎+𝑏)

2(𝑎2+𝑎𝑏+𝑏2)
) < 0 

 

Which gives 𝑎 − 𝐶𝑇′(𝑎 𝑏) < 0 

 

𝑎 < 𝐶𝑇′(𝑎 𝑏) = 0 and hence 𝐶𝑇′(𝑎 𝑏) > 𝑎 

 

Case (II): For 𝑎 < 𝑏  

 

Consider 𝐶𝑇′(𝑎 𝑏) − 𝑏 =
3

2
(

𝑎𝑏(𝑎+𝑏)

𝑎2+𝑎𝑏+𝑏2) − 𝑏 =
𝑏

2
(

(𝑎−𝑏)(2𝑎+𝑏)

(𝑎2+𝑎𝑏+𝑏2)
) < 0 

 

Which gives 𝐶𝑇′(𝑎 𝑏) − 𝑏 < 0 and hence 𝐶𝑇′(𝑎 𝑏) < 𝑏 

 

Combining both the above cases 𝑀𝑖𝑛(𝑎 𝑏) < 𝐶𝑇′(𝑎 𝑏) < 𝑀𝑎𝑥(𝑎 𝑏). 
 

Therefore 𝑎 < 𝐶𝑇′(𝑎 𝑏) < 𝑏 Satisfy the condition to be a mean 

 

Hence the proof of lemma 2.1 

 

Property: Since 𝐶𝑇′(𝑎 𝑏) = 𝐶𝑇′(𝑎 𝑏) and 𝐶𝑇′(𝑡𝑎 𝑡𝑏) = 𝑡𝐶𝑇′(𝑎 𝑏) it is clear that invariant to centroidal mean is 

symmetric and homogeneous respectively. 

 

Theorem 2.1. For two distinct positive real values an < bn the sequence 𝑎𝑛+1 = 𝐶𝑇′(𝑎𝑛 𝑏𝑛)is monotonically increasing 

and the sequence bn+1 = CT(an bn) is monotonically decreasing. Also satisfy 

 

𝑚𝑖𝑛(𝑎 𝑏) = 𝑎 = 𝑎0 < 𝑎1 < 𝑎2 <. . < 𝑎𝑛 < 𝑎𝑛+1 <  
 

… < 𝑏𝑛+1 < 𝑏𝑛 <. . < 𝑏1 < 𝑏0 = 𝑏 = 𝑚𝑎𝑥 (𝑎 𝑏) 

 

Proof: Let 𝑎𝑛+1 = 𝐶𝑇′(𝑎𝑛 𝑏𝑛) =
3

2
(

𝑎𝑏(𝑎+𝑏)

𝑎2+𝑎𝑏+𝑏2) and 𝑏𝑛+1 = 𝐶𝑇(𝑎 𝑏) =
2

3
(

𝑎2+𝑎𝑏+𝑏2

𝑎+𝑏
) 

 
𝑎𝑛+1

𝑎𝑛
=

3𝑏𝑛(𝑎𝑛 + 𝑏𝑛)

2(𝑎𝑛
2 + 𝑎𝑛𝑏𝑛 + 𝑏𝑛

2)
> 1 

 

Gives 𝑎𝑛+1 > 𝑎𝑛 which hold for all 𝑛 

 

This proves that 

(2.1) 𝑀𝑖𝑛(𝑎 𝑏) = 𝑎 = 𝑎0 < 𝑎1 < 𝑎2 <. . . . < 𝑎𝑛 < 𝑎𝑛+1 

 

Similarly  

  

𝑏𝑛+1

𝑏𝑛
=

2(𝑎𝑛
2 + 𝑎𝑛𝑏𝑛 + 𝑏𝑛

2)

3𝑏𝑛(𝑎𝑛 + 𝑏𝑛)
< 1 

 

Gives 𝑏𝑛+1 > 𝑏𝑛 which hold for all 𝑛 

 

This proves that 

 

(2.2) 𝑏𝑛+1 < 𝑏𝑛 <. . . . < 𝑏1 < 𝑏0 = 𝑏 = max (𝑎 𝑏) 

 

Eqs (2.1) and (2.2) leads to theorem 2.1 

 

Theorem 2.2. For 𝑛 ≥ 0 𝑎𝑛 < 𝑏𝑛 the sequence𝑎𝑛+1 = 𝐶𝑇′(𝑎𝑛 𝑏𝑛) is log-concave and the sequence 𝑏𝑛+1 = 
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𝐶𝑇(𝑎𝑛 𝑏𝑛) is log-convex. 

 

Proof: If 𝑎𝑛 < 𝑏𝑛 the Centroidal mean and invariant to Centroidal mean are given by 

 

𝑏𝑛+1 = 𝐶𝑇(𝑎𝑛 𝑏𝑛) =
2

3

(𝑎𝑛
2 +𝑎𝑛𝑏𝑛+𝑏𝑛

2)

(𝑎𝑛+𝑏𝑛)
 and 𝑎𝑛+1 = 𝐶𝑇′(𝑎𝑛 𝑏𝑛) =

3

2
(

𝑎𝑛𝑏𝑛(𝑎𝑛+𝑏𝑛)

𝑎𝑛
2 +𝑎𝑛𝑏𝑛+𝑏𝑛

2) 

 

𝑎𝑛

𝑎𝑛+1
−

𝑎𝑛−1

𝑎𝑛
=

2(𝑎𝑛
2 + 𝑎𝑛𝑏𝑛 + 𝑏𝑛

2)

3𝑏𝑛(𝑎𝑛 + 𝑏𝑛)
−

2(𝑎𝑛−1
2 + 𝑎𝑛−1𝑏𝑛−1 + 𝑏𝑛−1

2 )

3𝑏𝑛−1(𝑎𝑛−1 + 𝑏𝑛−1)
 

 

=
2(𝑎𝑛

2𝑎𝑛−1𝑏𝑛−1 + 𝑎𝑛
2𝑏𝑛−1

2 − 𝑎𝑛𝑏𝑛𝑎𝑛−1
2 − 𝑎𝑛−1

2 𝑏𝑛
2)

3𝑏𝑛𝑏𝑛−1(𝑎𝑛−1 + 𝑏𝑛−1)(𝑎𝑛 + 𝑏𝑛)
 

 

 

 =
2(𝑎𝑛𝑎𝑛−1 + 𝑎𝑛𝑏𝑛−1 + 𝑎𝑛−1𝑏𝑛)(𝑎𝑛𝑏𝑛−1 − 𝑏𝑛𝑎𝑛−1)

3𝑏𝑛𝑏𝑛−1(𝑎𝑛−1 + 𝑏𝑛−1)(𝑎𝑛 + 𝑏𝑛)
 

 

 Since 𝑎0 < 𝑎1 < 𝑎2 <. . . . < 𝑎𝑛 < 𝑏𝑛 < 𝑏𝑛−1 <  … … … < 𝑏1 < 𝑏0 

 

𝑎𝑛𝑏𝑛−1 > 𝑏𝑛𝑎𝑛−1 

 

𝑎𝑛𝑏𝑛−1 − 𝑏𝑛𝑎𝑛−1 > 0 

 

(𝑠𝑖𝑛𝑐𝑒 𝑎𝑛−1 < 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 < 𝑏𝑛−1) 

 
𝑎𝑛

𝑎𝑛+1
−

𝑎𝑛−1

𝑎𝑛
> 0 

 

So 𝑎𝑛
2 > 𝑎𝑛+1𝑎𝑛−1 and hence 𝑎𝑛+1 = 𝐶𝑇′(𝑎𝑛 𝑏𝑛) is log-concave 

 

Similarly Consider  

 
𝑏𝑛

𝑏𝑛+1
−

𝑏𝑛−1

𝑏𝑛
=

3𝑏𝑛(𝑎𝑛 + 𝑏𝑛)

2(𝑎𝑛
2 + 𝑎𝑛𝑏𝑛 + 𝑏𝑛

2)
−

3𝑏𝑛−1(𝑎𝑛−1 + 𝑏𝑛−1)

2(𝑎𝑛−1
2 + 𝑎𝑛−1𝑏𝑛−1 + 𝑏𝑛−1

2 )
 

 

=
3(𝑎𝑛𝑏𝑛𝑎𝑛−1

2 + 𝑏𝑛
2𝑎𝑛−1

2 − 𝑎𝑛
2𝑎𝑛−1𝑏𝑛−1 − 𝑏𝑛−1

2 𝑎𝑛
2)

2(𝑎𝑛
2 + 𝑎𝑛𝑏𝑛 + 𝑏𝑛

2)(𝑎𝑛−1
2 + 𝑎𝑛−1𝑏𝑛−1 + 𝑏𝑛−1

2 )
 

 

=
3(𝑏𝑛𝑎𝑛−1 − 𝑎𝑛𝑏𝑛−1)(𝑎𝑛𝑎𝑛−1+𝑏𝑛𝑎𝑛−1 − 𝑏𝑛−1𝑎𝑛)

2(𝑎𝑛
2 + 𝑎𝑛𝑏𝑛 + 𝑏𝑛

2)(𝑎𝑛−1
2 + 𝑎𝑛−1𝑏𝑛−1 + 𝑏𝑛−1

2 )
 

 

 Since 𝑎0 < 𝑎1 < 𝑎2 <. . . . < 𝑎𝑛 < 𝑏𝑛 < 𝑏𝑛−1 <  … … … < 𝑏1 < 𝑏0 

 

𝑎𝑛𝑏𝑛−1 > 𝑏𝑛𝑎𝑛−1 

 

𝑏𝑛𝑎𝑛−1 − 𝑎𝑛𝑏𝑛−1 < 0 

 

(𝑠𝑖𝑛𝑐𝑒 𝑎𝑛−1 < 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 < 𝑏𝑛−1) 

 
𝑏𝑛

𝑏𝑛+1
−

𝑏𝑛−1

𝑏𝑛
< 0 

 

So  𝑏𝑛
2 < 𝑏𝑛+1𝑏𝑛−1 and hence𝑏𝑛+1 = 𝐶𝑇(𝑎𝑛 𝑏𝑛) is log –convex. Thus the Proof of theorem 2.2 completes. 

 

Theorem 2.3. The sequences (𝑎𝑛)𝑛 ≥ 0 and (𝑏𝑛)𝑛 ≥ 0 are defined in terms of invariant to centroidal mean and 

centroidal mean which convergent to the common limit depicted as 𝐶𝑇(𝑎 𝑏) ⊗ 𝐶𝑇′(𝑎 𝑏) = 𝐺(𝑎 𝑏) = √𝑥. 

 

Proof: We know that 𝑎𝑛 < 𝑎𝑛+1 <  𝑏𝑛+1 < 𝑏𝑛 𝑛 ≥ 0                (2.3) 

 

 𝑏𝑛+1 − 𝑎𝑛+1 =
(4𝑎𝑛

4 +4𝑏𝑛
4−𝑎𝑛

3 𝑏𝑛−𝑎𝑛𝑏𝑛
3−6𝑎𝑛

2 𝑏𝑛
2)

6(𝑎𝑛
3 +𝑏𝑛

3+2𝑎𝑛
2 𝑏𝑛+2𝑎𝑛𝑏𝑛

2)
 

 Consider 
(4𝑎𝑛

4 +4𝑏𝑛
4−𝑎𝑛

3 𝑏𝑛−𝑎𝑛𝑏𝑛
3−6𝑎𝑛

2 𝑏𝑛
2)

6(𝑎𝑛
3 +𝑏𝑛

3+2𝑎𝑛
2 𝑏𝑛+2𝑎𝑛𝑏𝑛

2)
− (𝑏𝑛 − 𝑎𝑛) 

https://www.allresearchjournal.com/


 

~ 170 ~ 

International Journal of Applied Research https://www.allresearchjournal.com  
 

(2.4) 
(𝑎𝑛−𝑏𝑛)(14𝑎𝑛

3 +6𝑏𝑛
3+19𝑎𝑛

2 𝑏𝑛+13𝑎𝑛𝑏𝑛
2)

6(𝑎𝑛
3 +𝑏𝑛

3+2𝑎𝑛
2 𝑏𝑛+2𝑎𝑛𝑏𝑛

2)
<

(𝑏𝑛−𝑎𝑛)

6
 

 

Combining the eqs (2.3) and (2.4) gives 

 

𝑏𝑛+1 − 𝑎𝑛+1 <
𝑏𝑛 − 𝑎𝑛

6
 

 

Repeat the process leads to 

  

𝑏𝑛+1 − 𝑎𝑛+1 <
𝑏𝑛 − 𝑎𝑛

6
<

𝑏𝑛−1 − 𝑎𝑛−1

6
< ⋯ <

𝑏 − 𝑎

6
 

 

So as 𝑛 → ∞ 𝑏𝑛+1−𝑎𝑛+1 → 0 and 

  

lim
𝑛→∞

𝑏𝑛+1𝑎𝑛+1 = lim
𝑛→∞

𝑏𝑛𝑎𝑛 =  … … = 𝑎𝑏 = √𝑎𝑏√𝑎𝑏 

 

Take 𝑎 = 1 𝑏 = 𝑥 leads to 

  

lim
𝑛→∞

𝑏𝑛+1𝑎𝑛+1 = √𝑥√𝑥 = 𝑥 

 

Thus by Theorem 2.1 (𝑎𝑛)𝑛 ≥ 0 and (𝑏𝑛)𝑛 ≥ 0 are monotonically increasing and monoton- ically decreasing 

sequences respectively. Also  

 

𝑎𝑛+1𝑏𝑛+1 = 𝐶𝑇′(𝑎𝑛 𝑏𝑛)𝐶𝑇(𝑎𝑛 𝑏𝑛) = (
𝑎𝑛𝑏𝑛(𝑎𝑛 + 𝑏𝑛)

𝑎𝑛
2 + 𝑎𝑛𝑏𝑛 + 𝑏𝑛

2
) (

(𝑎𝑛
2 + 𝑎𝑛𝑏𝑛 + 𝑏𝑛

2)

(𝑎𝑛 + 𝑏𝑛)
) = 𝑎𝑛𝑏𝑛 

 

Where 𝑥 is a multiple of two positive real numbers. This implies that 

(2.5) 

  

lim
𝑛→∞

𝑎𝑛 × lim
𝑛→∞

𝑏𝑛 =  𝑥 

 

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑏𝑛 =  √𝑥 

 

Therefore the sequence “(𝑎𝑛)𝑛 ≥ 0 and (𝑏𝑛)𝑛 ≥ 0” are convergent to a common limit √𝑥. 

Hence the proof of theorem 2.3 completes. 

 

3. Application of extracting square root 

In [6] authors discussed Heron’s method of extracting square roots using Gaussian compound mean 𝐻 ⊗ 𝐴. In this section 

the convergence process of the new Gaussian compound mean 𝐶𝑇′ ⊗ 𝐶𝑇 and 𝐻 ⊗ 𝐴 are discussed. 

The following table-1 and figures (1) and (2) illustrate the approximate process of computing √2. Also evident that 𝐶𝑇′ ⊗
𝐶𝑇 is convergence to common limit faster than 𝐻 ⊗ 𝐴. 

 

  
 

Fig 1: Graphs of Gaussian and centroidal compound means 
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Fig 2: Comparison of Gaussian and centroidal compound means 

 

Table 1: The values of Gaussian compound mean and new compound mean 
 

 
Gaussian compound mean 

 
New Gaussian compound Mean 

 
H x A 

  
CT x CT 

 
N An Bn N An Bn 

0 1 2 0 1 2 

1 1.5 1.333333 1 1.555555556 1.285714 

2 1.420635 1.407821 2 1.424906151 1.403601 

3 1.414254 1.414173 3 1.414280427 1.414147 

4 1.414214 1.414214 4 1.414213565 1.414214 

5 1.414214 1.414214 5 1.414213562 1.414214 

6 1.414214 1.414214 6 1.414213562 1.414214 

7 1.414214 1.414214 7 1.414213562 1.414214 
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