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Differential calculus in modelling predator-prey 

interactions within ecosystems after the introduction 
of invasive species 

 
Neelesh Sajin Mangalam 
 
Abstract 
The spread of Cheetahs in the Kuno National Park is modelled by a simple diffusion model, which is a 
partial differential equation, after assuming a system of only species of predator, cheetahs, and one 
species of prey, deer. It is found the population of cheetahs expands radially outwards from the point 
they have been released, whilst the population of deer reduces proportional to the increase in cheetah 
population. 
 
Keywords: Lotka–Volterra equations, multivariable calculus, population and spatial dynamics, 
diffusion model, telegraph process 
 
Introduction 
A major recent event in my country was the reintroduction of cheetahs in India, where a 
small population of Southeast African cheetahs was brought to the Kuno National Park in 
Madhya Pradesh, from Namibia (Dhanalakshmi). Reading further on the topic, I found 
mixed reactions within the scientific community; some zoologists and wildlife biologists 
praise the reintroduction as supporting conservation efforts and providing a “protected 
space” for the endangered species, whilst others criticized the efforts as being unsustainable 
and disruptive to the local ecosystem (Khanwalkar). Such polarization of opinions vastly 
stem from the high uncertainty in knowing how the newly introduced population would 
interact with native species and grow within the entire ecosystem. 
Therefore, holding a natural affinity for the subject, I decided to explore the application of 
mathematics in ecological systems to model the spatial interactions of the cheetah population 
with native species’ populations, which includes how cheetahs prey on and compete with 
other animals, and their population dynamics, which is the modelling of the rate of change of 
populations across space and time. Additionally, its strengths and limitations in adapting and 
applying will be a major focus of this essay. 
 
Describing the spatial interactions of cheetahs 
The spatial interactions of cheetahs are mainly concerned with the movement of cheetahs 
around an ecosystem and how such movement is affected by numerous factors such as 
migration, weather, other animals, etc. The following section aims to find the mathematical 
model for cheetah movement which would most accurately model real world cheetah 
movements in an ecosystem like that of the Kuno National Park. 
To begin with, the movement of cheetahs can be represented as the rate of change of 
population density, A, with respect to time at varying spatial coordinates. Mathematically, 
such a model would involve a multivariable function relating 𝐴𝐴 with time, and each of the 
spatial coordinates. To find the movement therefore, a partial derivative of the function must 
be found with respect to only time, keeping other variables, i.e. the spatial coordinates, 
constant. 
Considering a 2–dimensional space – ignoring the third dimension, height, as it can be 
reasonably assumed cheetahs move only on a 2–dimensional plane as they are flightless – it 
is represented as, 
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𝜕𝜕𝐴𝐴(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝜕𝜕𝑡𝑡

 
 
Where 𝐴𝐴(𝑥𝑥,𝑦𝑦, 𝑡𝑡) is a function for the population density at 
spatial coordinates 𝑥𝑥, 𝑦𝑦, and time 𝑡𝑡. 
Secondly, cheetahs can initially be assumed to move by a 
simple diffusion process, specifically Brownian motion, 
where their motion is completely unpredictable and in 
random directions at infinite velocities (Holmes 3). Though 
such conditions are highly unrealistic and no animal could 
display such movement, it serves as a good starting point for 
creating more complicated, and realistic, models. 
Fick’s laws of diffusion, proposed by Adolf Fick, describe 
motion via diffusion (Philibert 1). His first law, models the 
evolution of the concentration of a substance, analogous to 
population density, over time, at particular spatial 
coordinates. In a 2–dimensional space it gives: 
 
𝑱𝑱 ∝ −∇(𝜑𝜑) 
 
∴ 𝑱𝑱 = −𝐷𝐷∇(𝜑𝜑)           (1) 
 
where 𝑱𝑱 is the diffusion flux vector which measures the rate 
of flow of a substance across a unit area, 𝜑𝜑 is the 
concentration of the substance, D is the diffusion coefficient 
giving the rate of diffusion that is unique to each system and 
has units m2s-1, and ∇ is the gradient operator giving the 
gradient in the direction where it is the greatest. 
In a closed system, the law of conversation of mass tells us 
the quantity of the substance in the system remains constant. 
Mathematically, it is expressed by the continuity expression, 
which gives the change in quantity of the substance: 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ∙ 𝐉𝐉 = 0 ⇔  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −∇ ∙ 𝐉𝐉       (2) 
 
Where ∇ ∙ is the divergence operator giving the outward 
flux, or outwards rate of flow, of a substance from an 
infinitesimal volume around a certain coordinate? Thus, the 
continuity expression states that the rate of change of 
concentration of a substance at any point is equal to the 
negative rate of flow of that substance out from that point 
per unit area. 
 
Substituting (1) into (2) yields: 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝛻𝛻 ∙ −𝐷𝐷𝛻𝛻(𝜑𝜑) = 0 

 
∴ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝐷𝐷𝛻𝛻 ∙ 𝛻𝛻(𝜑𝜑) = 0         (3) 

 
The operator ∇ ∙ ∇ gives the “divergence of the gradient” 
and results into the Laplacian, ∆. This separates the rate of 

change of concentration of the substance with respect to 
distance in the 𝑥𝑥 and 𝑦𝑦 directions. 
 
∇ ∙ ∇φ = ∆𝜑𝜑           (4) 
 
The Laplacian, ∆, of a function 𝑓𝑓 in 𝑛𝑛–dimensional space is 
defined: 
 
∆𝑓𝑓 = ∑ 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥𝑎𝑎2
𝑛𝑛
𝑎𝑎=1            (5) 

 
Where 𝑥𝑥𝑎𝑎 are the cartesian coordinates in the 𝑎𝑎th–dimension. 
 
Substituting (4) into (5) yields: 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝐷𝐷∆𝜑𝜑 = 0  

 
From (5), taking a 2–dimensional space ∴ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝐷𝐷(∑ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝑎𝑎2

) = 0 2
𝑎𝑎=1  

 

∴
𝜕𝜕𝜑𝜑
𝜕𝜕𝑡𝑡

− 𝐷𝐷 �
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑦𝑦2

� = 0 

 
Thus yielding Fick’s 2nd law ∴ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐷𝐷 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

�  (6) 
 
Thus the equation gives how the concentration of a 
substance changes at varying spatial coordinates with 
respect to time. This partial differential equation can thus be 
adapted to predict the movement of cheetahs: 𝜑𝜑, the 
concentration of a substance, is analogous to the population 
density 𝐴𝐴 in a system of cheetahs instead of the 
concentration of a substance 𝜑𝜑, giving, 
 
From (6),  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐷𝐷 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

�      (7) 
 
Therefore, this partial differential equation (PDE) is a model 
for the rate of change of population density at each spatial 
coordinate. 𝐷𝐷, the diffusion coefficient, measures the rate of 
diffusion which is unique to each animal/species in each 
ecosystem. The solution for this PDE is the function relating 
𝐴𝐴 to the spatial coordinates 𝑥𝑥, 𝑦𝑦, and time 𝑡𝑡, and was 
graphed, using Mathematica, for an ecosystem where an 
arbitrary number of organisms were released with 
population density 𝐴𝐴 = 1 at spatial coordinates (0, 0) at 𝑡𝑡 =
0 (Figure 1.). Population density is only shown on the 𝑥𝑥 axis 
as it would be impossible to depict 4 variables and the 
population density evolves the same in both axes thus it is 
satisfactory as we are only interested in understanding how 
cheetahs would disperse from the center. 
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Fig 1: Graph showing the relationship between 𝐴𝐴, 𝑥𝑥, and 𝑡𝑡. 
 

Thus, we can make an immediate observation from the 
graph: at 𝑡𝑡 = 0, the population density is exactly 1 at 𝑥𝑥 = 0, 

and very concentrated near 𝑥𝑥 = 0 at low values of 𝑡𝑡 where 
the cheetahs are assumed to have been released. 
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Furthermore, it is also seen that as 𝑡𝑡 → ∞, 𝐴𝐴 tends to 
become evenly distributed across all values of 𝑥𝑥, showing 
that over time, the distribution of cheetahs tends to become 
homogenous. In fact, at each point in time, the position of 
the cheetahs are normally distributed and thus 𝐴𝐴 is given by 
a bell shaped curve which flattens over time indicating the 
cheetahs getting more equally distributed. 
These results serve as a sanity check, as it is expected that 
the cheetahs moving randomly would eventually tend 
towards an even distribution thus indicating the model 
logically makes sense when applied. 
However, there are weaknesses to this model. Firstly, unlike 
one would expect, 𝐴𝐴 at all other coordinates is not 0 and 
rather is an extremely low, non–zero positive value. As a 
matter of fact, at all 𝑡𝑡, the population density 𝐴𝐴 never 
reaches 0, implying some cheetahs can move extremely 
large distances in very short periods of time. This is due to 
the underlying assumption that cheetahs move at infinite 
velocities. However, given the drastic decrease in 𝐴𝐴 as 𝑥𝑥 
gets really high for small values of 𝑡𝑡, the model only 
predicts an extremely small, negligible probability of 
cheetahs to be able to move impossibly far away. Thus, 
given that we are only concerned with the average behavior 
of cheetahs, not improbable one off events, such a 
shortcoming does not affect the applicability of the model. 
Another shortcoming of this model is that it assumes 
cheetahs have completely random motion, on both small and 
large time scales, which is not true. On short time scales, 
cheetahs have momentum and inertia and thus cannot 
arbitrarily change their directions instantaneously, and 
instead, would resist such changes and continue to move in 
the same direction for long periods of time. Although, this 
would likely not make a difference on our results as we are 
only interested in the average movement of cheetahs over 
longer periods of time. 
Although, even on long time scales, most animals, including 
cheetahs, tend to move in certain specific directions 
depending on the climate, habitat, human intervention, etc. 
Therefore, the outcome that all cheetahs become equally 
spread out over long periods of time is unrealistic, as they 
tend to be more concentrated in some areas than others. 
Usually though, these effects are minor, and the overall 
movement of animals can still be assumed to be by simple 
diffusion 
Moving onwards, it is also important to derive a function 
giving the mean positions of cheetahs at any time 𝑡𝑡 for 
modelling the spread of cheetahs, which in this analysis may 
be more useful than finding the likely position of every 
cheetah. Thus, in this next section, a function is found 
relating the mean position of the cheetahs with respect to 𝑡𝑡 
along the 𝑥𝑥 direction, position being the displacement from 
the origin along the 𝑥𝑥 axis. Once again, because the spread 
of cheetahs is the same in both directions, finding the 
displacement in one direction is sufficient. 
In this case, cheetahs move equally in the positive and 
negative directions and thus simply summing the 
displacements of all cheetahs would yield an average 
displacement of 0. Thus, the root–mean–squared (RMS) 
displacement along the 𝑥𝑥 axis at time 𝑡𝑡, 𝛼𝛼𝑥𝑥(𝑡𝑡), would be a 
better measure of displacement over time (RMS 
displacement being the square root of the sum of the square 
of all displacements). 
First, let there be 𝜌𝜌 cheetahs released at the origin, 𝑥𝑥 = 0 m, 
with 𝑋𝑋𝑐𝑐(𝑡𝑡) being the position of the 𝑐𝑐th cheetah after 𝑡𝑡 

seconds. Thus, the sum of the square of all displacements at 
𝑡𝑡 is, 
 

𝑋𝑋1(𝑡𝑡)2 + 𝑋𝑋2(𝑡𝑡)2 + 𝑋𝑋3(𝑡𝑡)2 … 𝑥𝑥𝜌𝜌(𝑡𝑡)2 = �𝑋𝑋𝑐𝑐(𝑡𝑡)2
𝜌𝜌

𝑐𝑐=1

 

 

∴ 𝛼𝛼𝑥𝑥(𝑡𝑡) = �1
𝜌𝜌
∑ 𝑋𝑋𝑐𝑐(𝑡𝑡)2𝜌𝜌
𝑐𝑐=1         (8) 

 
The displacement of a cheetah 𝛽𝛽 m in 1 second is given by, 
 
±𝛽𝛽 = 𝑋𝑋𝑐𝑐(𝑡𝑡 − 1) − 𝑋𝑋𝑐𝑐(𝑡𝑡) ⟹ 𝑋𝑋𝑐𝑐(𝑡𝑡) = 𝑋𝑋𝑐𝑐(𝑡𝑡 − 1) ± 𝛽𝛽 
 
The ± sign is included because roughly half the cheetahs 
move in the positive direction while the other half moves in 
the negative direction. In the next step, the displacement of 
the cheetah at 𝑡𝑡 is squared, 
 
𝑋𝑋𝑐𝑐(𝑡𝑡)2 = (𝑋𝑋𝑐𝑐(𝑡𝑡 − 1) ± 𝛽𝛽)2 = 𝑋𝑋𝑐𝑐(𝑡𝑡 − 1)2 ± 2𝛽𝛽𝑋𝑋𝑐𝑐(𝑡𝑡 − 1) + 𝛽𝛽2  
            (9) 
 
Thus, the mean–squared displacement (MSD) is, (from (8) 
and) (9) 
 

𝛼𝛼𝑥𝑥(𝑡𝑡)2 =
1
𝜌𝜌
�(𝑋𝑋𝑐𝑐(𝑡𝑡 − 1)2 ± 2𝛽𝛽𝑋𝑋𝑐𝑐(𝑡𝑡 − 1) + 𝛽𝛽2)
𝜌𝜌

𝑐𝑐=1

 

 
= 1

𝜌𝜌
∑ 𝑋𝑋𝑐𝑐(𝑡𝑡 − 1)2𝜌𝜌
𝑐𝑐=1 ± 1

𝜌𝜌
∑ 2𝛽𝛽𝑋𝑋𝑐𝑐(𝑡𝑡 − 1)𝜌𝜌
𝑐𝑐=1 + 1

𝜌𝜌
∑ 𝛽𝛽2𝜌𝜌
𝑐𝑐=1  

(10) 
 
From (9), it is evident the first term, 1

𝜌𝜌
∑ 𝑋𝑋𝑐𝑐(𝑡𝑡 − 1)2𝜌𝜌
𝑐𝑐=1  is 

simply the MSD at time 𝑡𝑡 − 1. Thus, 
 
𝑎𝑎𝑥𝑥(𝑡𝑡 − 1)2 = 1

𝜌𝜌
∑ 𝑋𝑋𝑐𝑐(𝑡𝑡 − 1)2𝜌𝜌
𝑐𝑐=1        (11) 

 
The next term will average out to zero, as half the cheetahs 
have positive displacements and half have negative 
displacements. 
 
± 1

𝜌𝜌
∑ 2𝛽𝛽𝑋𝑋𝑐𝑐(𝑡𝑡 − 1)𝜌𝜌
𝑐𝑐=1 = 0        (12) 

 
Thus, from (10), (11) and (12), 
 
𝛼𝛼𝑥𝑥(𝑡𝑡)2 = 𝛼𝛼(𝑡𝑡 − 1)2 + 𝛽𝛽2

𝜌𝜌
= 𝛼𝛼(𝑡𝑡 − 1)2 + δ2    (13) 

 
Where δ2 = 𝛽𝛽2

𝜌𝜌
, with units m2. 

 
From this result therefore, it is evident that the MSD 𝛼𝛼(𝑡𝑡) 
increases every second by 𝛿𝛿2. Since all cheetahs have zero 
displacement initially, this means that 𝛼𝛼(𝑡𝑡) is a linear 
function with gradient 𝛿𝛿2. 
 
𝛼𝛼𝑥𝑥(0)2 = 0 
 
𝛼𝛼𝑥𝑥(1)2 = 𝛼𝛼𝑥𝑥(1 − 1)2 + 𝛿𝛿2 = 𝛿𝛿2 
 
𝛼𝛼𝑥𝑥(2)2 = 𝛼𝛼𝑥𝑥(2 − 1)2 + 𝛿𝛿2 = 𝛿𝛿2 + 𝛿𝛿2 = 2𝛿𝛿2 
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∴ 𝛼𝛼𝑥𝑥(𝑡𝑡)2 = 𝑡𝑡𝛿𝛿2           (14) 
 
Furthermore, since 𝛿𝛿2 gives a measure of the additional area 
covered by the cheetahs per unit 𝑡𝑡, it is equivalent to a 
measure of rate of diffusion. Thus, it is related to the 
diffusion constant 𝐷𝐷 by, 
 

𝐷𝐷 =
𝛿𝛿2

2
⇒ 𝛿𝛿2 = 2𝐷𝐷 

 
∴ 𝛼𝛼𝑥𝑥(𝑡𝑡)2 = 2𝐷𝐷𝑡𝑡          (15) 
 
Thus, the RMS displacement is, 
 
∴ 𝑎𝑎𝑥𝑥(𝑡𝑡) = √2𝐷𝐷𝑡𝑡          (16) 
 
The MSD in 2 dimensions 𝑏𝑏(𝑡𝑡)2 can be found by adding the 
component MSDs in each dimension, 
 
∴ 𝑏𝑏2(𝑡𝑡) = 𝑎𝑎𝑥𝑥(𝑡𝑡)2 + 𝑎𝑎𝑦𝑦(𝑡𝑡)2, 
 
Where 𝑎𝑎𝑦𝑦(𝑡𝑡) is the RMS displacement along the 𝑦𝑦 axis. 
However, 
 
𝑎𝑎𝑥𝑥(𝑡𝑡)2 = 𝑎𝑎𝑦𝑦(𝑡𝑡)2 
 
∴ 𝑏𝑏(𝑡𝑡)2 = 2 × 𝑎𝑎(𝑡𝑡)2 = 2 × 2𝐷𝐷𝑡𝑡 = 4𝐷𝐷𝑡𝑡     (17) 
 
∴ 𝑏𝑏(𝑡𝑡) = √4𝐷𝐷𝑡𝑡 = 2√𝐷𝐷𝑡𝑡         (18) 
 
Therefore, the average displacement of the cheetahs from 
the origin is proportional to the root of 𝑡𝑡 elapsed. The rms 
displacement is equivalent to the standard deviation 𝜎𝜎 of the 
position of the cheetahs as both are equal to the square root 
of the sum of the squares of the deviations of position of 
every cheetah at time 𝑡𝑡. 
 
𝑎𝑎𝑥𝑥(𝑡𝑡) = 𝜎𝜎𝑥𝑥 
 
𝑏𝑏(𝑡𝑡) = 𝜎𝜎 
 
Where 𝜎𝜎𝑥𝑥 is the standard deviation of the position of 
cheetahs along the 𝑥𝑥 axis. 
This allows us to find the exact solution for the PDE (7) in 1 
dimension. Since the population densities 𝐴𝐴 of cheetahs 
along the 𝑥𝑥 axis is normally distributed at every 𝑡𝑡, it is of the 
general form of a normal distribution curve 𝑓𝑓(𝑥𝑥) with mean 
𝜇𝜇 and standard deviation 𝜎𝜎, 
 

𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎𝑥𝑥√2𝜋𝜋
𝑒𝑒−

1
2�
𝑥𝑥−𝜇𝜇
𝜎𝜎𝑥𝑥

�
2

 

 

∴ 𝐴𝐴(𝑥𝑥, 𝑡𝑡) = 1
𝑎𝑎𝑥𝑥(𝜕𝜕)√2𝜋𝜋

𝑒𝑒−
1
2�

𝑥𝑥
𝑎𝑎𝑥𝑥(𝑡𝑡)�

2

= 1
√2𝐷𝐷𝜕𝜕×√2𝜋𝜋

𝑒𝑒−
1
2�

𝑥𝑥
√2𝐷𝐷𝑡𝑡

�
2

=

1
√4𝜋𝜋𝐷𝐷𝜕𝜕

𝑒𝑒−
𝑥𝑥2
4𝐷𝐷𝑡𝑡           (19) 

 
The average velocity of the cheetahs, 𝑣𝑣(𝑡𝑡) ms-1, can also be

calculated from (18) by differentiating the RMS 
displacement with respect to 𝑡𝑡. 
 

𝑣𝑣(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑥𝑥

2√𝐷𝐷𝑡𝑡 = 2
𝑑𝑑
𝑑𝑑𝑥𝑥

(𝐷𝐷𝑡𝑡)
1
2 

 
= 2 × 1

2
(𝐷𝐷𝑡𝑡)−

1
2 (Using the chain rule of differentiation) 

 
∴ 𝑣𝑣(𝑡𝑡) = 1

√𝐷𝐷𝜕𝜕
           (21) 

 
The average velocity of cheetahs therefore varies inversely 
with the square root of time 𝑡𝑡. Using these results, it is now 
possible to further refine our model for the movement of 
cheetahs. 
Firstly, because cheetahs spread out with the same velocity, 
𝑣𝑣(𝑡𝑡), in all directions, the population of cheetahs disperse 
radially outwards from the origin as a wave moving with 
velocity 1

√𝐷𝐷𝜕𝜕
. In this case, the peak of this wave gives the 

mean position of every cheetah. How the velocity of this 
wave varies with the distance travelled, can be found by 
solving for the velocity with respect to RMS displacement, 
𝑣𝑣(𝑏𝑏). 
 
𝑏𝑏(𝑡𝑡) = 2√𝐷𝐷𝑡𝑡 
 

∴ �
𝑏𝑏(𝑡𝑡)

2
�
2

= 𝐷𝐷𝑡𝑡 ⇒ 𝑡𝑡 =
𝑏𝑏(𝑡𝑡)2

4𝐷𝐷
 

 
From (19), 𝑣𝑣(𝑡𝑡) = 1

√𝐷𝐷𝜕𝜕
 

 
∴ 𝑣𝑣(𝑏𝑏) = 1

��𝑏𝑏(𝑡𝑡)
2 �

2 = 1
𝑏𝑏(𝑡𝑡)
2

= 2
𝑏𝑏(𝜕𝜕)

       (22) 

 
Thus, the velocity of the wave varies inversely with 
displacement from the origin. This can be represented on a 
graph as concentric circles, giving the mean position of the 
cheetahs at time 𝑡𝑡, moving out from the origin as 𝑡𝑡 
increases. The graph’s equations are thus those of a circle, 
 
(𝑥𝑥 − ℎ)2 + (𝑦𝑦 − 𝑘𝑘)2 = 𝑟𝑟, 
 
Where (ℎ, 𝑘𝑘) are the coordinates of the center, and 𝑟𝑟 is the 
radius of the circle. In this case, (ℎ, 𝑘𝑘) = (0,0), and the radii 
of these circles, 𝑟𝑟, is equal to 2√𝐷𝐷𝑡𝑡. Thus, 
 
𝑥𝑥2 + 𝑦𝑦2 = 2√𝐷𝐷𝑡𝑡. 
 
Assuming 𝐷𝐷 = 1, this can be graphed as, 
 
The velocity with which each point on the circle moves 
outwards perpendicularly is given by 𝑣𝑣(𝑡𝑡) or 𝑣𝑣(𝑏𝑏), where 𝑏𝑏 
is the radius of the circle. Therefore, the spread of cheetahs 
in the ecosystem can now be modelled, alongside a general 
description of the likely position of every cheetah in the 
ecosystem. 
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Fig 2: Graph showing average RMS displacements along 𝑥𝑥 and 𝑦𝑦 
axes of cheetahs at varying 𝑡𝑡 

 
Describing the population dynamics of cheetahs 
Population dynamics refers to the mathematical modelling 
of how populations change over time, mostly due to 
predator and prey interactions. This section is mainly 
concerned with modelling the rates of change of population 
densities of cheetahs and their prey, mostly spotted deer, 
with respect to 𝑡𝑡 at any point (𝑥𝑥,𝑦𝑦). 
To begin with, the rate of changes of population of prey can 
be modelled. It is assumed the cheetahs only consume one 
type of prey, which is reasonable as cheetahs majorly 
consume only spotted deer in the Kuno National Park 
(Koshy). Here, the instantaneous rate of change of deer 
population can be represented as the derivative of the deer 
population density (At a particular spatial coordinate), 𝑢𝑢, 
with respect to 𝑡𝑡, which is equal to the birth rate, 𝑃𝑃𝑢𝑢, minus 
the death rate, 𝐷𝐷𝑢𝑢, 
 
∴ 𝑑𝑑𝑢𝑢

𝑑𝑑𝜕𝜕
= 𝑃𝑃𝑢𝑢 − 𝐷𝐷𝑢𝑢           (23) 

 
The birth rate of deer, which is the number of new deer 
born, will, under the assumption that the deer have an 
unlimited food supply and thus can reproduce infinitely, be 
proportional to the deer population, 
 
𝑃𝑃𝑢𝑢 ∝ 𝑢𝑢 
 
∴ 𝑃𝑃𝑢𝑢 = 𝜒𝜒𝑢𝑢            (24) 
 
While the death rate, called the predation rate as it is due to 
predation, will be proportional to the product of the cheetah 
population 𝑐𝑐 and the deer population density 𝑢𝑢. This can be 
seen because a greater number of cheetahs would mean they 
consume more deer, while a greater deer population mean 
more are available for cheetahs to eat and thus they eat 
more. 
 
𝐷𝐷𝑢𝑢 ∝ 𝑢𝑢𝑐𝑐 
 
∴ 𝐷𝐷𝑢𝑢 = 𝜓𝜓𝑢𝑢𝑐𝑐          (25) 
 
Therefore from (23), (24), and (25), 
 

𝑑𝑑𝑢𝑢
𝑑𝑑𝜕𝜕

= 𝜒𝜒𝑢𝑢 − 𝜓𝜓𝑢𝑢𝑐𝑐           (26) 
 
Next, the rate of change of population density of cheetahs 
(at a particular spatial coordinate), which is the derivative of 
𝑐𝑐 with respect to 𝑡𝑡, can be modelled by a similar process. 
 
𝑑𝑑𝑐𝑐
𝑑𝑑𝜕𝜕

= 𝑃𝑃𝑐𝑐 − 𝐷𝐷𝑐𝑐           (27) 
 
Where 𝑃𝑃𝑐𝑐 is the growth rate of cheetahs and 𝐷𝐷𝑐𝑐 is the death 
rate of cheetahs. Because cheetahs only grow depending on 
their available nutrition source, it is proportional to the 
predation rate, 
 
𝑃𝑃𝑐𝑐 ∝ 𝑢𝑢𝑐𝑐 
 
𝑃𝑃𝑐𝑐 = Ψ𝑢𝑢𝑐𝑐            (28) 
 
Because more cheetahs will imply greater competition for 
the limited prey (the spotted deer), a greater number of 
foxes leads to more deaths and so the death rate is 
proportional to the cheetah population, 
 
𝐷𝐷𝑐𝑐 ∝ 𝑐𝑐 
 
𝐷𝐷𝑐𝑐 = Χc            (29) 
 
Therefore from, (27), (28) and, (29) 
 
𝑑𝑑𝑐𝑐
𝑑𝑑𝜕𝜕

= Ψuc − Χc           (30) 
 
Therefore, a pair of differential equations, (26) and (30), 
have been derived, together known as the Lotka–Volterra 
predator–prey model (Josef and Sigmund 2). These 
equations show us that the rate of change of either species’ 
population density is linked with the population density of 
the other species. These equations together can be used with 
the earlier spatial modelling to see how the populations of 
both predators and prey change over time at each spatial 
coordinate. To do this, it is first necessary to solve these 
differential equations to attain a deeper understanding of 
how exactly the populations of both species, predator and 
prey, are related. This can be done by plotting solutions 
parametrically on a phase plane, where the 𝑥𝑥 axis represents 
𝑢𝑢, and the 𝑦𝑦 axis represents 𝑐𝑐. The phase plane, therefore, 
shows the trajectory of each species’ population (or in other 
words, the way each population changes) depending on the 
population of the other. It can therefore be thought of as a 
vector field where each point is assigned a vector giving the 
rate of change of both populations. For the following study 
therefore, the proportionality constants can be eliminated as 
specific quantities are not being considered, rather only the 
general trend is being found. This is done by 
nondimensionalization, which research shows can reduce 
the Lotka–Volterra equations to, 
 
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑢𝑢 − 𝑢𝑢𝑐𝑐 
 
𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

= Υuc − Υc 
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To begin with, vectors can be assigned to both axes. 
Considering the 𝑥𝑥 axis first, where 𝑐𝑐 = 0, the rate of change 
of population density of 𝑢𝑢 is (from (26)), 
 
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑢𝑢 − 𝑢𝑢 × 0 = 𝑢𝑢 
 
This therefore eliminates the death rate, indicating that 𝑢𝑢 
increases exponentially. Thinking about this biologically, it 
makes sense because in the presence of 0 predators, the deer 
can continuously reproduce. Next, considering the 𝑦𝑦 axis, 
here 𝑢𝑢 = 0, 
 
𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

= Υ0 × 𝑐𝑐 − Υ𝑐𝑐 = Υ𝑐𝑐 
 
This eliminates the growth rate of cheetahs, indicating 𝑐𝑐 
continuously decreases. This again makes sense biologically 
as without any prey, the cheetahs starve or migrate 
elsewhere. 
However, there can also exist points of stability, called 
steady states, where neither species’ population density has 
any tendency to change. This is when 𝑑𝑑𝑢𝑢

𝑑𝑑𝜕𝜕
= 0, and 𝑑𝑑𝑐𝑐

𝑑𝑑𝜕𝜕
= 0, 

and therefore, 
 
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑢𝑢 − 𝑢𝑢𝑐𝑐 = 0 ⇒ 𝑢𝑢(1 − 𝑐𝑐) = 0 
 
∴ 𝑢𝑢 = 0, or 𝑐𝑐 = 1 
 
If 𝑢𝑢 = 0, 

𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

= −Υc = 0 
 
∴ 𝑐𝑐 = 0 
 
If 𝑐𝑐 = 1, 
 
𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

= Υu − Υ = 0 ⇒ Υ(u − 1) = 0 
 
∴ 𝑢𝑢 = 1 as Υ ≠ 0 
 
Therefore, the two steady states are at (0, 0) called 
extinction as both species have 0 populations, and (1, 1) 
called the center. A stability analysis can be conducted to 
show that the dynamics of both populations can be 
described by elliptical phase paths around the center. 
Depending on the initial conditions, the system of 𝑢𝑢 and 𝑐𝑐 
always remains on this path and keep “orbiting” the center 
on these phase paths. The direction in which the system 
moves can be found by considering a point on the phase 
path where 𝑐𝑐 > 1, hence, 𝑢𝑢𝑐𝑐 > 𝑢𝑢. Because the rate of 
change of 𝑢𝑢 is given by, 
 
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑢𝑢 − 𝑢𝑢𝑐𝑐 
 
It is immediately seen that 𝑑𝑑𝑢𝑢

𝑑𝑑𝜕𝜕
 will be negative, and 𝑢𝑢 will be 

decreasing. Therefore, on the phase path, when the system is 
above the center (1, 1), it must be moving leftwards. The 
phase plane can now be drawn using Matlab, 

 

 
 

Fig 3: Phase plane showing the population dynamics of deer and cheetahs 
 

Considering any initial condition, a starting value for 𝑢𝑢 and 
𝑐𝑐, therefore, the evolution of the population density of 
cheetahs and deer at any spatial coordinate can be 
determined. However, there are key weaknesses to this 
model which must be considered. 

Firstly, the model assumes that deer are able to find 
sufficient nutrition and space at all times to keep growing, 
and thus can reproduce freely in the absence of any 
predation. However, this is highly unrealistic as in the real 
world there are limits to the population of prey due to finite 
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food and space. Although is unlikely to have a major effect 
on the results of the model as the population of prey rarely 
ever reaches the point of food or space shortage. 
Secondly, it is also assumed that cheetahs only prey on deer 
which is untrue. However, because studies have shown that 
spotted deer make up a large majority of a cheetah’s diet, 
this too is mostly a reasonable assumption. 
 
Predicting the spatial and population dynamics of Kuno 
National Park after the reintroduction of Cheetahs 
Therefore, finally, both the spatial, and population dynamics 
can be used together to create a comprehensive description 
of how the ecosystem would react with the introduction of 
cheetahs in Kuno National Park. 
Firstly, when the 20 cheetahs are released at the origin, 
(0,0), they spread out by a simple diffusion process, slowly 
spreading outwards and becoming more evenly spread out 
throughout the entire ecosystem, as shown by Figure 1. This 
“spreading” of cheetahs can be measured by determining the 
how the mean position of every cheetah evolves over time. 
This is given by (18) and (21), and shows that the cheetahs 
continuously move outwards, occupying new regions further 
away from the origin. From the Lotka–Volterra model 
derived earlier, and the phase plane in Figure 3, it is seen 
that when the cheetah population density c suddenly 
increases, the system will be above the steady state, and thus 
d begins to decrease. Therefore, a travelling wavefront of 
high cheetah population density expands radially outwards, 
invading territory previously occupied by prey such as the 
spotted deer and causing their population to decrease. This 

can be represented graphically on the x axis (which is 
identical to the y axis). 
 

 
 

Fig 4: Graph showing population dynamics of cheetah and deer 
(Holmes 5) 

 
Here, the rightward arrows show how the wave front moves 
further from the origin over time. In the long–term however, 
the phase plane shows that 𝑐𝑐 eventually begins to decrease 
as they have fewer and fewer deer to prey on. When this 
happens, 𝑢𝑢 then begins to increase causing 𝑐𝑐 to increase 
once again and leading to a continuous cycle of oscillating 
population densities. This can once again, be shown 
graphically, using Desmos, by considering the initial 
conditions of high 𝑐𝑐 and decreasing 𝑢𝑢 – just after the 
cheetah’s reach the new region. 

 

 
 

Fig 5: Graph showing how the population densities of cheetahs and spotted deer vary with 𝑡𝑡 
 

Therefore, it is seen that the introduction of cheetahs, while 
introducing instability in the ecosystem, with population 
densities of both animals continuously changing, would still 
allow cheetah populations to establish themselves over the 
long term. 
 
Conclusion 
The aim of the essay was to use differential equations to 
model both the population, and spatial dynamics of the 
Kuno National Park’s ecosystem following the 
reintroduction of cheetahs. While models were able to be 
created to describe how the cheetahs will spread out over the 
entire ecosystem, and how their population interacts with 
their primary prey, spotted deer, a major limitation was that 
only cheetahs and spotted deer were considered in the 
system. In reality however, there are many other animals 

and both the cheetah and spotted deer are a part of much 
more complicated systems, such as a huge interconnected 
food web. Therefore, limiting the scope of the investigation 
to only two animals was a major downfall. However, 
knowing that cheetah’s mainly only prey on, and interact 
directly with cheetahs only, the final conclusion that the 
cheetahs would still be able to survive, found by differential 
calculus, still holds true. 
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