Contact: +91-9711224068
International Journal of Applied Research
  • Multidisciplinary Journal
  • Printed Journal
  • Indexed Journal
  • Refereed Journal
  • Peer Reviewed Journal

ISSN Print: 2394-7500, ISSN Online: 2394-5869, CODEN: IJARPF

IMPACT FACTOR (RJIF): 8.4

International Journal of Applied Research

Vol. 7, Issue 11, Part A (2021)

The spin-flip mechanism for neutron decay and its relation to the nuclear shell model

Author(s)
Robert J Buenker
Abstract
The exponentially-damped Breit-Pauli Schrödinger (XBPS) model of nuclear physics is reviewed. A key assumption is that the neutron is a compound of three elementary particles: the proton, the electron and the antineutrino. Binding within the neutron is achieved by assuming that the antineutrino plays an essential role in keeping the particles together. An important aspect of this approach is the choice of its charge-to-mass ratio to lie in the neighborhood of 0.5-0.6 bohr magneton, whereby arguments have been presented to show that such a large value is perfectly consistent with the experimentally known extreme penetrability of neutrinos. Previous calculations with the XBPS model have found that the triplet multiplicity of the deuteron can be explained by assuming, in agreement with the nuclear shell model, that spin-dependent forces are involved in addition to those which are purely electromagnetic in nature. Based on both experimental and theoretical inferences, a “spin-flip” mechanism is proposed to account for the instability of the neutron. The essential role of e- complexes of 0- symmetry in producing nuclear binding is emphasized, particularly their attraction for constituent protons in a given nucleus.
Pages: 08-16  |  104 Views  10 Downloads
How to cite this article:
Robert J Buenker. The spin-flip mechanism for neutron decay and its relation to the nuclear shell model. Int J Appl Res 2021;7(11):08-16.
Call for book chapter
International Journal of Applied Research